
CSCE 638, Spring 2025 First-Name Last-Name, 000000000

Assignment 3

RELEASE DATE: 03/24/2025

DUE DATE: 04/14/2025 11:59pm on Canvas

LaTeX Template: https://www.overleaf.com/read/tpmrnyhfpbcv#be6eb8

Name: First-Name Last-Name UIN: 000000000

This assignment consists of two parts: a writing section and a programming section. For the writing
section, please use the provided LaTeX template to prepare your solutions and remember to fill in
your name and UIN. For the programming section, please follow the instructions carefully.

When answering problems, please provide a detailed and step-by-step explanation to justify
your solutions.

Discussions with others on course materials and assignment solutions are encouraged, and the use
of AI tools as assistance is permitted. However, you must ensure that the final solutions are
written in your own words. It is your responsibility to avoid excessive similarity to others’
work. Additionally, please clearly indicate any parts where AI tools were used as assistance.

If you have any question, please send an email to csce638-ta-25s@list.tamu.edu

1 Event Detection with Sequential Labeling (Programming) [40pts]

We will solve a classic task in information extraction, called event detection. Given one piece of
text, we will train a model to detect if certain events are happening in the text. Particularly, we
consider the following 8 types of events which are common events for news articles.

Event Type Description

Personnel Anything related to election, nomination, starting working, stoping working

Conflict Anything related to conflict, attacks, demonstration

Justice
Anything related to acquittal, appeal, arrest, conviction, execution, extradition,
fine, lawsuit, pardon, sentence, trial hearing

Transaction Anything related to transaction, transferring money, transferring ownership

Movement Anything related to transport

Contact Anything related to communication, meeting, phone call

Life Anything related to birth, death, injury, marriage, divorce

Business
Anything related to bankruptcy, creating organization, merging organization,
ending organization

We define that an event happens in the text as long as we can identify a trigger span in the text.
Here are some examples:

1 of 9

https://www.overleaf.com/read/tpmrnyhfpbcv#be6eb8
csce638-ta-25s @list.tamu.edu

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

Text Events

America warns it will seek more layoffs if it does file for
Chapter 11

Personnel (trigger: layoffs)
Business (trigger: Chapter 11)

State proceedings could bring the death penalty if Nichols
is convicted

Justice (trigger: death penalty)
Justice (trigger: convicted)

Chalabi was the first top Iraqi opposition leader to be
airlifted by the U.S. military into southern Iraq as the
fighting wound down, and he and other top members of his
group plan to meet soon in Baghdad.

Movement (trigger: airlifted)
Conflict (trigger: fighting)
Contact (trigger: meet)

We are going to fine-tune a BERT model with sequential labeling to solve this task.

CSCE638-S25-HW3-1.ipynb: Colab Notebook

event-train.json: Data

valid.json: Data

test.json: Data

Please use your @tamu.edu email to access the Colab Notebook. Copy the Colab Notebook to your
drive and make the changes. The notebook has marked blocks where you need to code.

========= TODO : START =========
========= TODO : END =========

Please copy and paste your code (between TODO:START and TODO:END) as part of the solu-
tion. You can use the Minted package for code highlighting. Here is one example:

For this problem, you might have to change the Colab runtime type to enable GPU computation.
Please choose the T4 GPU.

1.1 Creating BIO Examples [12pts]

We have to convert the raw data to BIO sequences for sequential labeling. The raw data is in the
following JSON format:

{'text': ['america', 'warns', 'it', 'will', 'seek', 'more', 'layoffs', 'if', 'it',

'does', 'file', 'for', 'chapter', '11', '.'],

'events': [{'trigger': [6, 7], 'type': 'Personnel'},

{'trigger': [12, 14], 'type': 'Business'}]

}

It means that we have two events for this text, a Personnel event with the trigger span (layoffs)
from index 6 (inclusive) to index 7 (exclusive) and a Business event with the trigger span (chap-
ter 11) from index 12 (inclusive) to index 14 (exclusive). We have to convert it to input_ids,
attention_mak, and output_ids with transformers.BertTokenizer (link). Specifically, please
load google-bert/bert-base-uncased for the tokenizer. Here is the result of the above example:

input_ids = [101, 2148, 4420, 1005, 1055, 6996, 2283, 2003, 5307, 2019, 4722,

5290, 2923, 2655, 2005, 4487, 24137, 25780, 2993, 2000, 3443, 1037,

2 of 9

https://colab.research.google.com/drive/1cYDmmJ6LQvQayFxWNLznXyzwrSyfD35y?usp=sharing
https://drive.google.com/file/d/1A0tIyx64_UwiGoXVKJf9ly8b1XFnCbMy/view?usp=sharing
https://drive.google.com/file/d/1EXtnbl-DRSCiVOwutvuVtYOM_oSuMrB7/view?usp=sharing
https://drive.google.com/file/d/1-ubrCxNdRk5V_L7h4R1qq-V6baAMT3V2/view?usp=sharing
https://www.overleaf.com/learn/latex/Code_Highlighting_with_minted
https://huggingface.co/docs/transformers/en/model_doc/bert#transformers.BertTokenizer

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

2047, 2177, 2044, 1037, 28284, 4154, 2012, 2197, 2733, 1005, 1055,

2011, 1011, 3864, 1010, 2283, 4584, 2056, 9857, 1012, 102, 0, 0, 0,

0, 0, ...]

attention_mask = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, ...]

output_ids = [0, 0, 0, 0, 0, 0, 0, 1, 9, 0, 0, 0, 0, 0, 8, 16, 0, 0, 17, 17, 17,

17, 17, 17, 17, 17, ...]

To better understand the result, the corresponding subtokens of input_ids and the labels of
output_ids are shown below

subtokens = ['[CLS]', 'america', 'warns', 'it', 'will', 'seek', 'more', 'lay',

'##offs', 'if', 'it', 'does', 'file', 'for', 'chapter', '11', '.',

'[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', ...]

BIO_labels = ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-Personnel', 'I-Personnel',

'O', 'O', 'O', 'O', 'O', 'B-Business', 'I-Business', 'O', 'O',

'Ignore', 'Ignore', 'Ignore', 'Ignore', ...]

mapping = [('[CLS]', 'O'), ('america', 'O'), ('warns', 'O'), ('it', 'O'),

('will', 'O'), ('seek', 'O'), ('more', 'O'), ('lay', 'B-Personnel'),

('##offs', 'I-Personnel'), ('if', 'O'), ('it', 'O'), ('does', 'O'),

('file', 'O'), ('for', 'O'), ('chapter', 'B-Business'),

('11', 'I-Business'), ('.', 'O'), ('[SEP]', 'O'), ('[PAD]', 'Ignore'),

('[PAD]', 'Ignore'), ...]

Specifically, the input_ids should be the concatenation of all the subtokens with a [CLS] in the
beginning of the text, a [SEP] in the end of text, and multiple [PAD] to fit the max length. The
attention_mak should have the same length as input_ids and indicates which subtokens are not
[PAD].

The output_ids should have the same length as input_ids and define the corresponding BIO
tags based on a label_mapping (defined in the code). For instance, the [8, 16] in output_ids

indicates the subtokens [‘chapter’, ‘11’] is the trigger span of a Business event, where 8 rep-
resents B-Business and 16 represents I-Business (based on label_mapping), corresponding to
‘chapter’ and ‘11’, respectively. Similarly, the [1, 9] in output_ids indicates the subtokens [‘lay’,
‘##offs’] is the trigger span of a Personnel event, where 1 represents B-Personnel and 9 repre-
sents I-Personnel (based on label_mapping), corresponding to ‘lay’ and ‘##offs’, respectively.
Please notice that, although in the raw data, the trigger span of the Personnel event is just one
word, we have to process it as two subtokens due to the tokenization. You might notice that there
are some 'Ignore' token index (17) at the end of output_ids. They are similar to [PAD], which
won’t be consider when calulating the loss.

Copy and paste your code as well as the output of test_data2example.

Solution:

Please enter your solution here.

3 of 9

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

1.2 Decoding BIO Examples [12pts]

For the training purpose, we have to implement a function to decode BIO sequences back to
predictions, based on the original text and output_ids. For instance, given the following

text = ['america', 'warns', 'it', 'will', 'seek', 'more', 'layoffs', 'if', 'it',

'does', 'file', 'for', 'chapter', '11', '.']

output_ids = [0, 0, 0, 0, 0, 0, 0, 1, 9, 0, 0, 0, 0, 0, 8, 16, 0, 0, 17, 17, 17,

17, 17, 17, 17, 17, ...]

We have to generate the following

predictions = [{'trigger': [6, 7], 'type': 'Personnel'},

{'trigger': [12, 14], 'type': 'Business'}]

Copy and paste your code as well as the output of test_output2prediction.

Solution:

Please enter your solution here.

1.3 Training [8pts]

We will fine-tune transformers.BertForTokenClassification (link) for sequential labeling. Please
refer to the previous assignments and finish the code for training. Specifically, we will choose the
best checkpoint based on the compute_score function (code provided). It calculates the F1-score
(link) based on the ground truths and the predictions. Please load google-bert/bert-base-uncased
for BERT.

Copy and paste your code (between TODO:START and TODO:END) as well as the output.

Solution:

Please enter your solution here.

1.4 Testing [8pts]

Please report the testing F1-score. This time, during grading, we will replace the test file with
another hidden file to test the performance of your model. Please make sure that there won’t be
any runtime errors.

Solution:

Please enter your solution here.

4 of 9

https://huggingface.co/docs/transformers/en/model_doc/bert#transformers.BertForTokenClassification
https://en.wikipedia.org/wiki/F-score

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

2 Sentence Similarity with Triplet Loss (Programming) [32pts]

As mentioned in the lecture, pre-trained BERT is not good for measuring sentence similarity. In
this problem, we are going to tine-tune BERT with triplet loss and make BERT more suitable for
sentence similarity.

CSCE638-S25-HW3-2.ipynb: Colab Notebook

sim-train.json: Data

sim-valid.json: Data

sim-test.json: Data

Please use your @tamu.edu email to access the Colab Notebook. Copy the Colab Notebook to your
drive and make the changes. The notebook has marked blocks where you need to code.

========= TODO : START =========
========= TODO : END =========

Please copy and paste your code (between TODO:START and TODO:END) as part of the solu-
tion. You can use the Minted package for code highlighting. Here is one example:

def hello_world():

print("Hello World!")

For this problem, you might have to change the Colab runtime type to enable GPU computation.
Please choose the T4 GPU.

2.1 Preparing Data [4pts]

Each example in the raw data consists of three sentences: (1) a reference sentence, (2) a positive
sentence, and (3) a negative sentence. The reference sentence has semantics more similar to the
positive sentence than the negative sentence. Therefore, we expect the sentence embedding of the
reference sentence should be more similar to the sentence embedding of the positive sentence than
the sentence embedding of the negative sentence.

Use transformers.BertTokenizer (link) to prepare the input ids and the attention masks for refer-
ence, positive, and negative sentences. Specifically, please load google-bert/bert-base-uncased

for the tokenizer.

Copy and paste your code as well as the output of test_bert_tokenize.

Solution:

Please enter your solution here.

2.2 Testing Pre-Trained BERT [6pts]

We first test the performance of pre-trained BERT. Given an example (ref_sent, pos_sent, neg_sent),
we use the output embedding of [CLS] as the sentence embedding for all sentences. The similarity

5 of 9

https://colab.research.google.com/drive/1-jGQFj6PEO-oWE3sLVxfwiGrf2ERE5O5?usp=sharing
https://drive.google.com/file/d/1EEzsYU9yoWUu4l-KMfONgnXam1eU9nzj/view?usp=sharing
https://drive.google.com/file/d/10SDavJgf8pz1R6Li2tvM-XyFuijNrZjS/view?usp=sharing
https://drive.google.com/file/d/1y-2z_P5hKtrmMjhTPjQMeYU2Fs-KkYd-/view?usp=sharing
https://www.overleaf.com/learn/latex/Code_Highlighting_with_minted
https://huggingface.co/docs/transformers/en/model_doc/bert#transformers.BertTokenizer

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

will be computed by cosine-similarity. We test the percentage of examples where pre-trained
BERT can have higher Sim(ref_sent, pos_sent) than Sim(ref_sent, neg_sent).

Copy and paste your code (between TODO:START and TODO:END) and report the score.

Solution:

Please enter your solution here.

2.3 Preparing BERT for Similarity [6pts]

We create a BERTSimModel in the following way. The new sentence embedding will be obtained by

Tanh(W⊤E),

where E is the output embedding of [CLS] and W is a learnable linear projection. Please load
google-bert/bert-base-uncased for BERT.

Copy and paste your code (between TODO:START and TODO:END).

Solution:

Please enter your solution here.

2.4 Training [8pts]

Please finish the code for training. Specifically, we consider the following triplet loss, which can be
viewed as a simplified contrastive loss:

Ltriplet = − log
exp(sim(eref , epos))

exp(sim(eref , epos)) + exp(sim(eref , eneg))

where eref , epos, and eneg are the sentence embeddings of ref_sent, pos_sent, and neg_sent, and
sim(·) is the cosine similarity function.

Copy and paste your code (between TODO:START and TODO:END) as well as the output.

Solution:

Please enter your solution here.

2.5 Testing [8pts]

Please report the testing performance. This time, during grading, we will replace the test file with
another hidden file to test the performance of your model. Please make sure that there won’t be
any runtime errors.

Solution:

Please enter your solution here.

6 of 9

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

3 Adversarial Attacks for CLIP (Programming) [28pts]

We will implement two methods for attacking CLIP. Given an image, we consider two texts:
a photo of a cat and a photo of a dog. By computing the CLIP scores between the image
and the texts, we can classify the image as a cat or dog based on the scores. The provided code
has already implemented the classification code. More information can be found here.

CSCE638-S25-HW3-3.ipynb: Colab Notebook

cat.jpg: Image

Please use your @tamu.edu email to access the Colab Notebook. Copy the Colab Notebook to your
drive and make the changes. The notebook has marked blocks where you need to code.

========= TODO : START =========
========= TODO : END =========

Please copy and paste your code (between TODO:START and TODO:END) as part of the solu-
tion. You can use the Minted package for code highlighting. Here is one example:

def hello_world():

print("Hello World!")

For this problem, you might have to change the Colab runtime type to enable GPU computation.
Please choose the T4 GPU.

3.1 Visualizing Images [6pts]

Please use matplotlib to show the original image from inputs["pixel_values"]. The values
in inputs["pixel_values"] are after normalization with mean = [0.481, 0.457, 0.408] and std =
[0.268, 0.261, 0.275] for different channels. Therefore, you have to denormaliza the image before
showing. More details about image nomalization can be found here.

Copy and paste your code as well as the visualization.

Solution:

Please enter your solution here.

3.2 Fast Gradient Sign Method (FGSM) Attack [8pts]

Fast Gradient Sign Method (FGSM) is a simple attacking method based on the gradient sign. Let
x denote the normalized pixel values (inputs["pixel_values"]) and consider the cross-entropy
loss LCE based on the CLIP logits (outputs.logits_per_image). We can calculate the gradient
of loss LCE w.r.t. x, denoted as ∇xLCE . Then, we modify the normalized pixel values x by the
following

x = x+ α · Sign(∇xLCE)

where Sign(·) is the sign function and α is a hyper-parameter.

7 of 9

https://arxiv.org/pdf/2103.00020
https://huggingface.co/docs/transformers/en/model_doc/clip
https://colab.research.google.com/drive/13uGQlpYib-PeMbJmhGxAdU2PTXjLIDQA?usp=sharing
https://drive.google.com/file/d/1_NxEYdRuPsbu7t9hH96LqYWcXog-6FlG/view?usp=sharing
https://www.overleaf.com/learn/latex/Code_Highlighting_with_minted
https://en.wikipedia.org/wiki/Normalization_(image_processing)
https://arxiv.org/pdf/1412.6572
https://en.wikipedia.org/wiki/Sign_function

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

Please implement the FGSM. You can use torch.Tensor.grad (link) to get the gradient after
loss.backward().

Copy and paste your code, and report classification probabilities as well as the image visualization
when α = [0.1, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 5.0]. You can additionally report the results of other choice
of α if you think they better demonstrate the effect of FGSM.

For reference, when α = 1, the probabilities of cat and dog are [0.5961, 0.4039], with the image
shown below.

Solution:

Please enter your solution here.

3.3 Basic Iterative Method (BIM) Attack [14pts]

Basic Iterative Method (BIM) is an advanced version of FGSM. It is basically repeating FGSM
several iterations, which is

x(i+1) = x(i) + α · Sign(∇x(i)LCE)

where x(0) is the original normalized pixel values (inputs["pixel_values"]). If we set the number
of iterations N to 5, we will get x(5) as the adversarial example.

Please implement the BIM. You can use torch.Tensor.grad (link) to get the gradient after
loss.backward().

Copy and paste your code, and report classification probabilities as well as the image visualization
for all combinations of α = [0.05, 0.1, 0.2] and N = [1, 2, 3, 4, 5] (15 combinations in total). You can
additionally report the results of other choice of α and N if you think they better demonstrate the
effect of BIM.

For reference, when α = 0.05 and N = 4, the probabilities of cat and dog are [0.4192, 0.5808], with
the image shown below.

8 of 9

https://pytorch.org/docs/stable/generated/torch.Tensor.grad.html
https://arxiv.org/pdf/1607.02533
https://pytorch.org/docs/stable/generated/torch.Tensor.grad.html

CSCE 638, Spring 2025 First-Name Last-Name, 000000000

Solution:

Please enter your solution here.

Submission Instructions

You have to upload a .zip file to Canvas, which contains the following:

• submission.pdf: The .pdf file generated by the LaTeX template.

• submission1.py: Please export the Colab Notebook for problem 1 to a .py file by clicking
“File” → “Download” → “Download .py”

• submission1.ipynb: Please export the Colab Notebook for problem 1 to a .ipynb file by
clicking “File” → “Download” → “Download .ipynb”

• submission2.py: Please export the Colab Notebook for problem 2 to a .py file by clicking
“File” → “Download” → “Download .py”

• submission2.ipynb: Please export the Colab Notebook for problem 2 to a .ipynb file by
clicking “File” → “Download” → “Download .ipynb”

• submission3.py: Please export the Colab Notebook for problem 3 to a .py file by clicking
“File” → “Download” → “Download .py”

• submission3.ipynb: Please export the Colab Notebook for problem 3 to a .ipynb file by
clicking “File” → “Download” → “Download .ipynb”

9 of 9

	Event Detection with Sequential Labeling (Programming) [40pts]
	Creating BIO Examples [12pts]
	Decoding BIO Examples [12pts]
	Training [8pts]
	Testing [8pts]

	Sentence Similarity with Triplet Loss (Programming) [32pts]
	Preparing Data [4pts]
	Testing Pre-Trained BERT [6pts]
	Preparing BERT for Similarity [6pts]
	Training [8pts]
	Testing [8pts]

	Adversarial Attacks for CLIP (Programming) [28pts]
	Visualizing Images [6pts]
	Fast Gradient Sign Method (FGSM) Attack [8pts]
	Basic Iterative Method (BIM) Attack [14pts]

