
CSCE 638 Natural Language Processing
Foundation and Techniques

Spring 2025

Lecture 2: Text Classification

(Some slides adapted from Dan Jurafsky and Karthik Narasimhan)

Kuan-Hao Huang



Course Staff

Kuan-Hao Huang

• Email: khhuang@tamu.edu

• Office Hour: Wed. 2pm – 3pm

• Office: PETR 219

1

Instructor

Rahul Baid

• Email: rahulbaid@tamu.edu

• Office Hour: Wed. 12pm – 1pm

• Office: TBD

TA

For questions, send emails to csce638-ta-25s@lists.tamu.edu

mailto:khhuang@tamu.edu
mailto:rahulbaid@tamu.edu
mailto:csce638-ta-25s@lists.tamu.edu


Textbook and Readings (Optional)

• Speech and Language Processing (3rd ed. draft)

• Dan Jurafsky and James H. Martin

• https://web.stanford.edu/~jurafsky/slp3/
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https://web.stanford.edu/~jurafsky/slp3/


Lecture Plan

• Formulation of Text Classification

• Bag-of-Words (Bow) and N-Grams

• Logistic Regression

• Neural Networks
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Sentiment Analysis

4
https://www.amazon.com/dp/B07YT16TMS

Positive Negative



Topic Classification
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https://www.nytimes.com/2024/11/17/health/chatgpt-ai-doctors-diagnosis.html

Technology

Politics

Economy

Business

Health

Education

Sports



Fraud Detection
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Suspicious / Normal 



Large Language Models with Text Classification 
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Normal model, math mode, code mode, …

Enable search, enable calculator, …

Ethical issue, harmful prompts, …



Generation is Sequence of Classification!
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This morning, I woke 

This morning, I woke up 

This morning, I woke up at 

Selected from all 
possible words

Selected from all 
possible words

Selected from all 
possible words



Text Classification
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Text

A small study found that ChatGPT outdid human 
physicians when assessing medical case histories, 
even when those doctors were using a chat bot.

Category (Class)

Technology

Politics

Economy

Health Sports
It can be phrase, sentence, 

paragraph, or document

𝑥 = [𝑤1, 𝑤2, … , 𝑤𝑙] 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}



Supervised Learning

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Example 𝑥𝑖 ∈ 𝒳, label 𝑦𝑖 ∈ 𝐶

• Train a classifier(model) 𝑓: 𝒳 → 𝐶
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How to train?

Training Stage

Testing Stage

• Testing data 𝒟𝑡𝑒𝑠𝑡 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 }

• Make predictions 𝑦𝑖 = 𝑓(𝑥𝑖)

• Evaluate performance 
1

n
σ𝑖 𝑆(𝑦𝑖, 𝑦𝑖) Accuracy, F1 Score, etc.



Supervised Learning

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Example 𝑥𝑖 ∈ 𝒳, label 𝑦𝑖 ∈ 𝐶

• Train a classifier(model) 𝑓: 𝒳 → 𝐶
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How to train?

Training Stage

• How does the model understand example 𝑥?

• How does the model make label prediction 𝑦?



A General Framework for Text Classification
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification
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• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words, n-grams, word embeddings, etc.
We will talk about them later!



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification
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• Teach the model how to make prediction 𝑦

• Logistic regression, neural networks, CNN, RNN, LSTM, Transformers

We will talk about them later!



Bag-of-Words (BoW)

• Bag-of-Words (BoW)

• Consider text as a set of words

• Easy, no effort required

15

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦



Bag-of-Words (BoW)
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This restaurant is the best one in 
College Station

This

restaurant

is

the

best

one

in
College

Station

I study natural language processing 
everyday

study

I

processing

everyday

natural

language



Bag-of-Words (BoW)
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This restaurant is the best one in College Station

𝐱 = [0 1 1 0 0 1 0 1 1 …  0 1 1 0 1 1]

Feature vector 𝐱 is 
a binary vector

Each dimension represents one word, 
indicating the presence of word

The length of vector is 
the dictionary size 𝑉

Advantages and disadvantages?



Bag-of-Words (BoW)
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Bob likes Alice very much

Alice likes Bob very much

𝐱 = [0 1 1 0 0 1 …  0 1]

They will have the same BoW vector!

BoW fails to capture sentential structure

Any solutions?



N-Grams
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Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}

Trigram {Bob likes Alice, likes Alice very, Alice very much}

4-gram {Bob likes Alice very, likes Alice very much}



Bag-of-N-Grams
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Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 …  0 0 0 1 …  1 1]𝐱 = [0 1 …  0 1 1 0 …  0 1]

BoW (unigram) features Bigram features

N-gram features capture more sentential structure

We can consider trigrams, 4-grams, …



Other Variants
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𝐱 = [0 1 1 0 0 1 …  0 1]Binary BoW

𝐱 = [0 2 1 0 0 4 …  0 3]Word Count

𝐱 = [0 0. 16 0.08 0 0 0.32 …  0 0.24]Word Frequency

𝐱 = [0 0. 48 0.02 0 0 0.15 …  0 0.88]TF-IDF

𝑓𝑤 ⋅ log
𝑁

𝑛𝑡Term Frequency 
(TF)

Inverse Document 
Frequency (IDF)



Bag-of-Words and Bag-of-N-Grams

• Bag-of-Words (BoW)

• A set of words

• Bag-of-N-Grams

• A set of n-grams
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

We will discuss “learnable” 
features later!



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Logistic Regression
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• Logistic regression

• Find linear weights to map feature vector 𝐱 to label 𝑦



Logistic Regression

• Let’s start from binary classification

• Input: feature vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑]

• Output: label 𝑦 ∈ {0, 1}

• Find a linear decision boundary to classify 𝐱 into {0, 1}

24
https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

https://blog.bigml.com/2016/09/28/logistic-regression-versus-decision-trees/



Logistic Regression
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Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0 𝑜𝑟 1

𝑧 = 𝐰 ⋅ 𝐱 + 𝑏

𝑦 = 𝑃 𝑦 = 1  𝐱) = 𝜎 𝑧

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏

Learnable parameters

𝜎 𝑡 =
1

1 + 𝑒−𝑡

Sigmoid Function

Decision boundary: = ቊ
1
0

If 𝑦 ≥ 0.5 

If 𝑦 < 0.5 

Convert to probability



How to Find The Best Parameters?
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Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏

Learnable parameters

Iterative Optimization Methods

Randomly initialize 
parameters

Evaluate 
“goodness” of 

parameters

Identify “good” 
updating direction 

Update parameters



Loss Function
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Iterative Optimization Methods

• For each training example 𝑥, 𝑦

• Output label probability is 𝑦 = 𝑃 𝑦 = 1  𝐱) = 𝜎 𝐰 ⋅ 𝐱 + 𝑏

ℒ𝐶𝐸(𝑦, 𝑦) = − 𝑦 log 𝑦 + 1 − 𝑦 log 1 − 𝑦

Cross Entropy Loss



Loss Function
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Iterative Optimization Methods

ℒ𝐶𝐸(𝑦, 𝑦) = − 𝑦 log 𝑦 + 1 − 𝑦 log 1 − 𝑦

Cross Entropy Loss

𝑦 = 1 and 𝑦 = 0.9 ℒ𝐶𝐸 = − 1 ⋅ log 0.9 + 0 ⋅ log 0.1 = − log 0.9 ≈ 0.105

𝑦 = 1 and 𝑦 = 0.1 ℒ𝐶𝐸 = − 1 ⋅ log 0.1 + 0 ⋅ log 0.9 = − log 0.1 ≈ 2.302

𝑦 = 0 and 𝑦 = 0.9 ℒ𝐶𝐸 = − 0 ⋅ log 0.9 + 1 ⋅ log 0.1 = − log 0.1 ≈ 2.302

𝑦 = 0 and 𝑦 = 0.1 ℒ𝐶𝐸 = − 0 ⋅ log 0.1 + 1 ⋅ log 0.9 = − log 0.9 ≈ 0.105

The lower the loss is, the more accurate the output probability is



Loss Function
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Iterative Optimization Methods

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Output labels probabilities 𝑦1, 𝑦2,…, 𝑦𝑚

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚


𝑖

ℒ𝐶𝐸 𝑦𝑖, 𝑦𝑖 = −
1

𝑚


𝑖

𝑦𝑖 log 𝑦𝑖 + 1 − 𝑦𝑖 log 1 − 𝑦𝑖

Cross Entropy Loss



Optimization Objective
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Iterative Optimization Methods

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚


𝑖

ℒ𝐶𝐸 𝑦𝑖, 𝑦𝑖

Cross Entropy Loss

𝐰∗; 𝑏∗ = 𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏Parameters 𝜃 =

Optimization 
objective



Gradient

31

Iterative Optimization Methods

𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

https://www.digitalocean.com/community/tutorials/intro-to-optimization-in-deep-learning-gradient-descent

𝜃(0) → 𝜃(1) → 𝜃(2) → ⋯ → 𝜃 𝑘 → ⋯ → 𝜃∗

∇𝜃(𝑡)ℒ𝑡𝑜𝑡𝑎𝑙 is a “good” direction 

to minimize the objective

𝜃(𝑡)

𝜃(𝑡+1)

∇𝜃(𝑡)ℒ𝑡𝑜𝑡𝑎𝑙



Gradient
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∇𝜃ℒ𝑡𝑜𝑡𝑎𝑙
𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
=

𝜕 −
1
𝑚

σ𝑖 𝑦𝑖 log 𝑦𝑖 + 1 − 𝑦𝑖 log 1 − 𝑦𝑖

𝜕𝐰𝑗

= −
1

𝑚


𝑖

𝑦𝑖

𝜕 log 𝜎(𝑧𝑖)

𝜕𝐰𝑗
+ 1 − 𝑦𝑖

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

𝑦𝑖 = 𝜎(𝑧𝑖)
𝑧𝑖 = 𝐰 ⋅ 𝐱𝑖 + 𝑏=

𝜕 −
1
𝑚

σ𝑖 𝑦𝑖 log 𝜎(𝑧𝑖) + 1 − 𝑦𝑖 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗



Gradient
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𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
= −

1

𝑚


𝑖

𝑦𝑖

𝜕 log 𝜎(𝑧𝑖)

𝜕𝐰𝑗
+ 1 − 𝑦𝑖

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

𝜕 log 𝜎(𝑧𝑖) 

𝜕𝐰𝑗
=

1

𝜎 𝑧𝑖
⋅ 𝜎 𝑧𝑖 1 − 𝜎 𝑧𝑖 ⋅ 𝐱𝑖,𝑗 = 1 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗
=

1

1 − 𝜎 𝑧𝑖
⋅ −𝜎 𝑧𝑖 1 − 𝜎 𝑧𝑖 ⋅ 𝐱𝑖,𝑗 = −𝜎 𝑧𝑖 𝐱𝑖,𝑗 1 − 𝜎 𝑧

′
= −𝜎(𝑧)(1 − 𝜎(𝑧))

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
= −

1

𝑚


𝑖

𝑦𝑖 1 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 + 1 − 𝑦𝑖 (−𝜎 𝑧𝑖 𝐱𝑖,𝑗)

= −
1

𝑚


𝑖

𝑦𝑖 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 =
1

𝑚


𝑖

𝑦𝑖 − 𝑦𝑖 𝐱𝑖,𝑗



Gradient
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Iterative Optimization Methods

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰
= 

𝑖=1

𝑚

𝑦𝑖 − 𝑦𝑖 𝐱𝑖

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏
= 

𝑖=1

𝑚

𝑦𝑖 − 𝑦𝑖



Gradient Descent
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Iterative Optimization Methods

ℒ𝑡𝑜𝑡𝑎𝑙

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂 ∇𝐰ℒ𝑡𝑜𝑡𝑎𝑙

𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∇𝑏ℒ𝑡𝑜𝑡𝑎𝑙

Learning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/



Training Process
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Iterative Optimization Methods

Randomly initialize 
parameters

Evaluate 
“goodness” of 

parameters

Identify “good” 
updating direction 

Update parameters

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚


𝑖

ℒ𝐶𝐸 𝑦𝑖, 𝑦𝑖; 𝐰 𝑡 , 𝑏(𝑡)

Cross Entropy Loss
𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰(𝑡)
= 

𝑖=1

𝑚

𝑦𝑖 − 𝑦𝑖 𝐱𝑖

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏(𝑡)
= 

𝑖=1

𝑚

𝑦𝑖 − 𝑦𝑖

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂 ∇𝐰ℒ𝑡𝑜𝑡𝑎𝑙

𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∇𝑏ℒ𝑡𝑜𝑡𝑎𝑙



From Binary to Multiclass Classification
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• Logistic Regression for binary classification

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0 𝑜𝑟 1

𝑧 = 𝐰 ⋅ 𝐱 + 𝑏

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏
Learnable 

Parameters

𝑃 𝑦 = 1  𝐱) = 𝜎 𝑧

𝜎 𝑡 =
1

1 + 𝑒−𝑡

Sigmoid Function

Prediction = ቊ
1
0

If 𝑃 𝑦 = 1  𝐱) ≥ 0.5 

If 𝑃 𝑦 = 1  𝐱) < 0.5 



From Binary to Multiclass Classification
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• Logistic Regression for multiclass classification

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0,1, … , 𝐶 − 1

𝑧𝑐 = 𝐰𝑐 ⋅ 𝐱 + 𝑏𝑐

Weight Vectors 𝐰𝑐 = [𝑤𝑐,1, 𝑤𝑐,2, 𝑤𝑐,3, … , 𝑤𝑐,𝑑] Bias 𝑏𝑐
Learnable 

Parameters

𝑃 𝑦 = 𝑐  𝐱) = softmax 𝑧𝑐

softmax 𝑧𝑐 =
𝑒𝑧𝑐

σ𝑡 𝑒𝑧𝑡

Softmax Function

Prediction = arg max
c

𝑃 𝑦 = 𝑐  𝐱)



From Binary to Multiclass Classification
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ℒ𝐶𝐸(𝑦, 𝑦) = − 𝑦 log 𝑦 + 1 − 𝑦 log 1 − 𝑦

Binary Cross Entropy Loss

ℒ𝐶𝐸(𝑦, 𝑦) = − 

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

Multiclass Cross Entropy Loss

𝑧0 = 𝐰0 ⋅ 𝐱 + 𝑏0 = −1.2

𝑧1 = 𝐰1 ⋅ 𝐱 + 𝑏1 = 4.8

𝑧2 = 𝐰2 ⋅ 𝐱 + 𝑏2 = −0.7

𝑧3 = 𝐰3 ⋅ 𝐱 + 𝑏3 = 2.5

ℒ𝐶𝐸 𝑦, 𝑦 = − 0 ⋅ log 0.002 + 1 ⋅ log 0.903 + 0 ⋅ log 0.004 + 0 ⋅ log 0.091 ≈ 0.102

𝑒−1.2

𝑒−1.2 + 𝑒4.8 + 𝑒−0.7 + 𝑒2.5 ≈ 0.002

𝑒4.8

𝑒−1.2 + 𝑒4.8 + 𝑒−0.7 + 𝑒2.5 ≈ 0.903

𝑒−0.7

𝑒−1.2 + 𝑒4.8 + 𝑒−0.7 + 𝑒2.5 ≈ 0.004

𝑒2.5

𝑒−1.2 + 𝑒4.8 + 𝑒−0.7 + 𝑒2.5 ≈ 0.091

Softmax

0

1

0

0

Label



Logistic Regression

• Logistic regression

• Find linear weights to map feature vector 𝐱 to label 𝑦

40
https://chatgpt.com/

https://www.researchgate.net/publication/344636757_CQNN_Convolutional_Quadratic_Neural_Networks

What if linear weights are not powerful enough?



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Neural Networks

41

• Neural Networks

• Find a non-linear decision boundary to map feature vector 𝐱 to label 𝑦



Biological Neurons
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Neuron activation: A neuron becomes active to transmit information 
when it receives sufficient input from other neurons

https://www.kdnuggets.com/2022/06/activation-functions-work-deep-learning.html



Neurons in Neural Networks
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Mimic the behavior of neurons to transmit information

𝑥1 𝑤1 𝑏

Σ
𝑥2 𝑤2

𝑥3 𝑤3

𝑥4 𝑤4

𝜑 𝑜

https://blog.devops.dev/exploring-activation-functions-in-deep-learning-properties-derivatives-and-impact-on-model-7585aad8a757

Input 𝐱 Weight 𝐰 Bias

Activation 
Function

Output

𝑜 = 𝜑 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏



Neurons vs. Logistic Regression
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𝑜 = 𝜑 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 𝑦 = 𝜎 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

𝑥3

Neuron𝑤1,1
(1)

𝑤1,2
(1)

𝑤1,2
(1)

ℎ1
(1)

= 𝜑 

𝑖

𝑤1,𝑖
(1)

𝑥𝑖 + 𝑏 = 𝜑 𝐰1
(1)

⋅ 𝐱 + 𝑏



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ2
(1)

= 𝜑 

𝑖

𝑤2,𝑖
(1)

𝑥𝑖 + 𝑏 = 𝜑 𝐰2
(1)

⋅ 𝐱 + 𝑏

𝑤2,1
(1)

𝑤2,2
(1)

𝑤2,2
(1)

Neuron

Neuron
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

𝐡(1) = 𝜑 𝐖(1)𝐱 + 𝐛(1)



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝐡(2) = 𝜑 𝐖(2)𝐡(1) + 𝐛(2)



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝐡(3) = 𝜑 𝐖(3)𝐡(2) + 𝐛(3)



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝑦

𝑦 = 𝜎 𝐖(𝑜)𝐡(3) + 𝐛(𝑜)
Decision boundary: = ቊ

1
0

If 𝑦 ≥ 0.5 

If 𝑦 < 0.5 
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝑦

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚


𝑖

ℒ𝐶𝐸 𝑦𝑖 , 𝑦𝑖

Cross Entropy Loss

𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

Parameters 𝜃 = {𝐖 1 , 𝐖 2 , 𝐖 3 , 𝐖 𝑜 ,

𝐛 1 , 𝐛 2 , 𝐛 3 , 𝐛 𝑜 },



Back-Propagation
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝑦
𝜕ℒ

𝜕 𝑦

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 𝑦
⋅

𝜕 𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐖(𝑜)
=

𝜕ℒ

𝜕 𝑦
⋅

𝜕 𝑦

𝜕𝐖(𝑜)

𝑦 = 𝜑 𝐖(𝑜)𝐡(3) + 𝐛(𝑜)

𝜕ℒ

𝜕𝐛(𝑜)
=

𝜕ℒ

𝜕 𝑦
⋅

𝜕 𝑦

𝜕𝐛(𝑜)



Back-Propagation
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝑦
𝜕ℒ

𝜕 𝑦

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐖(3)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐖(3)

𝐡(3) = 𝜑 𝐖(3)𝐡(2) + 𝐛(3)

𝜕ℒ

𝜕𝐛(3)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐛(3)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 𝑦
⋅

𝜕 𝑦

𝜕𝐡(3)



Back-Propagation
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝑦
𝜕ℒ

𝜕 𝑦

𝜕ℒ

𝜕𝐖(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐖(1)

𝜕ℒ

𝜕𝐛(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐛(1)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 𝑦
⋅

𝜕 𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐡(1)
=

𝜕ℒ

𝜕𝐡(2)
⋅

𝜕𝐡(2)

𝜕𝐡(1)



Training Process
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Iterative Optimization Methods

Randomly initialize 
parameters

Evaluate 
“goodness” of 

parameters

Identify “good” 
updating direction 

Update parameters

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚


𝑖

ℒ𝐶𝐸 𝑦𝑖, 𝑦𝑖; 𝐰 𝑡 , 𝑏(𝑡)

Cross Entropy Loss
𝜕ℒ

𝜕𝐖(1)
,

𝜕ℒ

𝜕𝐖(2)
, … ,

𝜕ℒ

𝜕𝐖(𝑜)

𝜕ℒ

𝜕𝐛(1)
,

𝜕ℒ

𝜕𝐛(2)
, … ,

𝜕ℒ

𝜕𝐛(𝑜)

𝐖(1) ← 𝐖(1) − 𝜂
𝜕ℒ

𝜕𝐖(1)

𝐛(1) ← 𝐛(1) − 𝜂
𝜕ℒ

𝜕𝐛(1)



From Binary to Multiclass Classification
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝑦1

Prediction = arg max
c

𝑦𝑐

𝑦2

𝑦3

ℒ𝐶𝐸(𝑦, 𝑦) = − 

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

Multiclass Cross Entropy Loss



What Makes Neural Networks Powerful?
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Introduce nonlinearity

Nonlinear
Transform

Nonlinear
Transform

Nonlinear
Transform



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Neural Networks
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• Neural Networks

• Find a non-linear decision boundary to map feature vector 𝐱 to label 𝑦



Lecture Plan

• Formulation of Text Classification

• Bag-of-Words (Bow) and N-Grams

• Logistic Regression

• Neural Networks

59



Feature
(Representation)

Text NLP Model Output

Next Lecture: Word Representations

60

𝑊 =

Bob     likes     Alice     very     much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
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