
CSCE 638 Natural Language Processing
Foundation and Techniques

Spring 2025

Lecture 3: Word Representations

(Some slides adapted from Chris Manning, Dan Jurafsky, Richard Socher, Karthik Narasimhan, and Danqi Chen)

Kuan-Hao Huang

Course Materials

• Available on the course website before the lecture

• Available on Canvas after the lecture

1

https://khhuang.me/CSCE638-S25/

Assignment 0

• https://khhuang.me/CSCE638-S25/assignments/assignment0_0122.pdf

• Due: 1/29/2025 11:59pm

• Summit a .zip file to Canvas

• submission.pdf for the writing section

• submission.py and submission.ipynb for the coding section

• For questions

• Discuss on Canvas

• Send an email to csce638-ta-25s@list.tamu.edu

2

https://khhuang.me/CSCE638-S25/assignments/assignment0_0122.pdf
mailto:csce638-ta-25s@list.tamu.edu

Course Staff

Kuan-Hao Huang

• Email: khhuang@tamu.edu

• Office Hour: Wed. 2pm – 3pm

• Office: PETR 219

3

Instructor

Rahul Baid

• Email: rahulbaid@tamu.edu

• Office Hour: Wed. 12pm – 1pm

• Office: PETR 359

TA

For questions, send emails to csce638-ta-25s@lists.tamu.edu

mailto:khhuang@tamu.edu
mailto:rahulbaid@tamu.edu
mailto:csce638-ta-25s@lists.tamu.edu

Lecture Plan

• Count-Based Word Vectors

• Prediction-Based Word Vectors

• Evaluation for Word Vectors

4

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification

5

• Teach the model how to understand example 𝑥

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification

6

• Teach the model how to make prediction 𝑦

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: Bag-of-Words and N-Grams

7

• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words and n-grams
We will discuss “learnable”

features today!

Bag-of-Words and N-Gram Features

8

Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 … 0 0 0 1 … 1 1]𝐱 = [0 1 … 0 1 1 0 … 0 1]

BoW (unigram) features Bigram features

Encode a text to one vector

We can consider trigrams, 4-grams, …

Words as Vectors

9

Bob likes Alice very much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
𝑊 =

Advantages?

Use one vector to represent each word

Text = A list of vectors

How to Represent Words?

A simple solution: discrete symbols

10

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Words can be represented by one-hot vectors:

good = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

great = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

bad = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

One 1, the rest 0s

good bad great

Any disadvantages?

Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “good restaurant”, we would
like to match documents containing “great restaurant”

11

But

good = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

great = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

These two vectors are orthogonal

There is no way to encode similarity of words in these vectors!

Any solutions?

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

12

from nltk.corpus import wordnet as wn
poses = { 'n’ : 'noun', 'v’ : 'verb', 's’ : 'adj (s)', 'a’ : 'adj', 'r’ : 'adv'}
for synset in wn.synsets(“bad”):
 print("{}: {}".format(poses[synset.pos()],
 ", ".join([l.name() for l in synset.lemmas()])))

noun: bad, badness
adj: bad
adj (s): bad, big
adj (s): bad, tough
adj (s): bad, spoiled, spoilt
adj: regretful, sorry, bad
adj (s): bad, uncollectible
…
adj (s): bad, risky, high-risk, speculative
adj (s): bad, unfit, unsound
adj (s): bad, forged
adj (s): bad, defective
adv: badly, bad

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

13

good = [0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0]

great = [0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0]

bad = [0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0]

good bad great

welfare sorry

Similarity(good, great) > Similarity(good, bad)cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Any disadvantages?

Problems with Resources Like WordNet

• Subjective

• A useful resource but missing nuance

• e.g., “sorry” is listed as a synonym for “bad”

• This is only correct in some contexts

• Requires human labor to create and adapt

14

Representing Words by Their Contexts

15

Distributional hypothesis: words that occur in similar contexts tend to have
similar meanings

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking

Distributional Hypothesis

16

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: I bought ___ yesterday.

juice

C1 C2 C3 C4

1 1 0 1

loud 0 0 0 0

motor-oil 1 0 0 1

chips 0 1 0 1

choices 0 1 0 0

wine 1 1 1 1

Words that occur in similar contexts tend to have similar meanings

Word Vectors from Word-Word Co-Occurrence Matrix

• Main idea: Similar contexts → Similar word co-occurrence

• Collect a bunch of texts and compute co-occurrence matrix

• Words can be represented by row vectors

17

shark computer data eat result sugar

apple 0 0 0 8 0 2

bread 0 0 0 9 0 1

digital 0 6 5 0 2 0

information 0 4 10 0 2 0

Word Vector High cosine
similarity!

cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Most entries are 0s → sparse vectors
Low cosine
similarity!

Issues with Word-Word Co-Occurrence Matrix

• Using raw frequency counts is not always very good (why?)

• Some frequent words (e.g., the, it, or they) can have large counts

18

the computer data eat result sugar the it

apple 0 0 0 8 0 2 104 67

bread 0 0 0 9 0 1 95 76

digital 0 6 5 0 2 0 101 65

Similarity(apple, bread) ≈ 0.994710

Similarity(apple, digital) ≈ 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts

Pointwise Mutual Information

19

Pointwise Mutual Information (PMI)

Do events 𝑥 and 𝑦 co-occur more or less than if they were independent?

PMI 𝑥, 𝑦 = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI = 0 → 𝑥 and 𝑦 occur independently → co-occurrence is as expected

• PMI > 0 → 𝑥 and 𝑦 co-occur more often than expected

• PMI < 0 → 𝑥 and 𝑦 co-occur less often than expected

Co-Occurrence Matrix with Positive PMI

20

PPMI 𝑥, 𝑦 = max log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
, 0

Positive Pointwise Mutual Information (PPMI)

the computer data eat result sugar the it

apple 0 0 0 1.80 0 0.35 0.08 0

bread 0 0 0 1.54 0 0.29 0 0.14

digital 0 1.47 1.22 0 0.61 0 0.10 0.06

Similarity(apple, bread) ≈ 0.995069

Similarity(apple, digital) ≈ 0.010795

Sparse Vectors vs. Dense Vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Can we have short short (50-300 dimensional) and dense (real-valued) vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than explicit counts

• Sparse vectors can’t capture high-order co-occurrence

• 𝑤1 co-occurs with “car”, 𝑤2 co-occurs with “automobile”

• They should be similar, but they aren’t, because “car” and “automobile” are distinct
dimensions

• In practice, they work better!

21

How to Get Dense Vectors?

• Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

22

Only keep the top k singular values

Word Vector

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Count-Based Word Vectors

23

• Use one vector to represent each word

• Get word vectors by singular value decomposition (SVD) of PPMI weighted
co-occurrence matrix

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Prediction-Based Word Vectors

24

• Can we learn word vectors directly from text?

Word2Vec

• Efficient Estimation of Word Representations in Vector Space, 2013

• 40000+ citations

25

Word Embeddings as Learning Problem

• Learning vectors (also called embeddings) from text for representing words

• Input:

• A large text corpus

• Wikipedia + Gigaword 5: 6B tokens

• Twitter: 27B tokens

• Common Crawl: 840B tokens

• Vocabulary 𝒱

• Vector dimension 𝑑 (e.g., 300)

• Output:

• Mapping function 𝑓: 𝒱 → ℝ𝑑

26

𝑣𝑎𝑝𝑝𝑙𝑒 =

−0.224
0.479
0.871

−0.231
0.101

𝑣𝑑𝑖𝑔𝑖𝑡𝑎𝑙 =

0.257
0.587

−0.972
−0.456
−0.002

Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚

27

Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚

Words that occur in similar contexts tend to have similar meanings

Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚

28

Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚

𝑃(𝑏|𝑎) = given the center word
is 𝑎, what is the probability that

b is a context word?

Classification Problem

𝑃(⋅ |𝑎) is a probability
distribution defined over 𝒱:

෍

𝑤∈𝒱

𝑃(𝑤|𝑎) = 1

We will define the distribution soon!

Word2Vec: Overview

29

Collect into training data
(into, problems)
(into, turning)
(into, banking)

(into, crises)

Collect into training data
(banking, turning)

(banking, into)
(banking, crises)

(banking, as)

𝑃(problems|into)× 𝑃(turning|into)× 𝑃(banking|into)× 𝑃(crises|into)

Maximize the likelihood

× 𝑃(turning|banking)× 𝑃(into|banking)× 𝑃(crises|banking)× 𝑃(as|banking)

Word2Vec: Likelihood

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed
size 𝑚, given center word 𝑤𝑡

30

𝜃 all parameters to be optimized

Likelihood for all context words given center word 𝑤𝑡For each position 𝑡 = 1, … , 𝑇

= ℒ 𝜃 = ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)Likelihood

Probability over all vocabulary 𝑉

Word2Vec: Objective Function

The objective function 𝐽(𝜃) is the (average) negative log likelihood

31

𝐽 𝜃 = −
1

𝑇
log ℒ 𝜃 = −

1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

We minimize the objective function (also called cost or loss function)

How to Define Probability?

Question: how to calculate 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)?

32

Answer: we have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

We consider Inner product 𝐮𝑤𝑡
∙ 𝐯𝑤𝑡+𝑗

 as the score to measure how likely the

context word 𝑤𝑡+𝑗 appears with the center word 𝑤𝑡, the larger the more likely!

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

𝜃 = 𝐮𝑘 , 𝒗𝑘 all parameters

How to Define Probability?

33

We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

The score to indicate how likely the context
word 𝑤𝑡+𝑗 appears with the center word 𝑤𝑡

Normalize over entire vocabulary
to give probability distribution

Softmax function: mapping arbitrary values to a probability distribution

softmax 𝑡 =
𝑒𝑡

σ𝑐 𝑒𝑐

Why Two Sets of Vectors?

34

We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

• Scores can be asymmetric

• It is not likely that a word appears in its own context

How to Train Word Vectors?

35

𝜃 = 𝐮𝑘 , 𝒗𝑘 Parameters:

Objective function:

Our goal: find parameters 𝜃 that minimize the objective function 𝐽 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

Solution: stochastic gradient descent (SGD)

• Randomly initialize parameters 𝜃

• For each iteration 𝜃 ⟵ 𝜃 − 𝜂 ∇𝜃 𝐽 𝜃

GradientLearning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/

Computing the Gradients

36

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

For simplicity, we consider one pair of center/context words (𝑜, 𝑐)

Objective function

=
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

− log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

The gradients can be calculated separately!

𝑦 = − log 𝑃 𝑐 𝑜 ; 𝜃) = − log
exp(𝐮𝑜 ∙ 𝐯𝑐)

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝑦

𝜕𝐮𝑜

𝜕𝑦

𝜕𝒗𝑐

We need to compute this!

= −𝐯𝑐 +
σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)
= −𝐯𝑐 + ෍

𝑘∈𝑉

exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

Computing the Gradients

37

𝜕𝑦

𝜕𝐮𝑜
=

𝜕 −𝐮𝑜 ∙ 𝐯𝑐 + log σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝐮𝑜

𝑦 = − log 𝑃 𝑐 𝑜) = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐮𝑜 ∙ 𝐯𝑐

= −𝐯𝑐 +
σ𝑘∈𝑉

𝜕exp(𝐮𝑜 ∙ 𝐯𝑘)
𝜕𝐮𝑜

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐯𝑐 + ෍

𝑘∈𝑉

𝑃(𝑘|𝑜) 𝐯𝑘
𝜕𝑦

𝜕𝐯𝑘
= −1 𝑘 = 𝑐 𝐮𝑜 + 𝑃 𝑘 𝑜)𝐮𝑜

Similar calculation step

𝜕log(𝑥)

𝜕𝑥
=

1

𝑥

𝜕exp(𝑥)

𝜕𝑥
= exp 𝑥

Training Process

• Randomly initialize parameters 𝐮𝑖, 𝐯𝑖

• Walk through the training corpus and collect training data 𝑜, 𝑐

38

𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
∀𝑘 ∈ 𝑉

Negative Sampling

Issue: every time we get one pair of 𝑜, 𝑐 , we have to update 𝐯𝑘 with

all the words in the vocabulary.

39

𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
∀𝑘 ∈ 𝑉

Negative sampling: instead of considering all the words in 𝑉, we randomly
sample 𝐾(5-20) negative examples

𝑦 = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)Softmax

𝑦 = − log 𝜎 𝐮𝑜 ∙ 𝐯𝑐 − ෍

𝑖=1

𝐾

𝔼𝑗~𝑃(𝑤) log 𝜎 −𝐮𝑜 ∙ 𝐯𝑗Negative sampling

𝜎 𝑥 =
1

1 + 𝑒−𝑥

Continuous Bag of Words (CBOW) vs Skip-Grams

40

	Slide 0: CSCE 638 Natural Language Processing Foundation and Techniques
	Slide 1: Course Materials
	Slide 2: Assignment 0
	Slide 3: Course Staff
	Slide 4: Lecture Plan
	Slide 5: Recap: A General Framework for Text Classification
	Slide 6: Recap: A General Framework for Text Classification
	Slide 7: Recap: Bag-of-Words and N-Grams
	Slide 8: Bag-of-Words and N-Gram Features
	Slide 9: Words as Vectors
	Slide 10: How to Represent Words?
	Slide 11: Problem with Words as Discrete Symbols
	Slide 12: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 13: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 14: Problems with Resources Like WordNet
	Slide 15: Representing Words by Their Contexts
	Slide 16: Distributional Hypothesis
	Slide 17: Word Vectors from Word-Word Co-Occurrence Matrix
	Slide 18: Issues with Word-Word Co-Occurrence Matrix
	Slide 19: Pointwise Mutual Information
	Slide 20: Co-Occurrence Matrix with Positive PMI
	Slide 21: Sparse Vectors vs. Dense Vectors
	Slide 22: How to Get Dense Vectors?
	Slide 23: Count-Based Word Vectors
	Slide 24: Prediction-Based Word Vectors
	Slide 25: Word2Vec
	Slide 26: Word Embeddings as Learning Problem
	Slide 27: Word2Vec: Overview
	Slide 28: Word2Vec: Overview
	Slide 29: Word2Vec: Overview
	Slide 30: Word2Vec: Likelihood
	Slide 31: Word2Vec: Objective Function
	Slide 32: How to Define Probability?
	Slide 33: How to Define Probability?
	Slide 34: Why Two Sets of Vectors?
	Slide 35: How to Train Word Vectors?
	Slide 36: Computing the Gradients
	Slide 37: Computing the Gradients
	Slide 38: Training Process
	Slide 39: Negative Sampling
	Slide 40: Continuous Bag of Words (CBOW) vs Skip-Grams

