CSCE 638 Natural Language Processing
Foundation and Techniques

Lecture 3: Word Representations

Kuan-Hao Huang
Spring 2025

T

(Some slides adapted from Chris Manning, Dan Jurafsky, Richard Socher, Karthik Narasimhan, and Dangi Chen)

Course Materials

« Available on the course website before the lecture

« Available on Canvas after the lecture

https://khhuang.me/CSCE638-S25/

Assignment O

https://khhuang.me/CSCE638-S25/assisnments/assienment0 0122.pdf
Due: 1/29/2025 11:59pm
Summit a .zip file to Canvas

- submission.pdf for the writing section
- submission.py and submission.ipynb for the coding section

For questions
« Discuss on Canvas

« Send an email to csce638-ta-25s@list.tamu.edu

https://khhuang.me/CSCE638-S25/assignments/assignment0_0122.pdf
mailto:csce638-ta-25s@list.tamu.edu

Course Staff

Instructor TA

‘,

Kuan-Hao Huang Rahul Baid
« Email: khhuang@tamu.edu - Email: rahulbaid@tamu.edu
« Office Hour: Wed. 2pm — 3pm - Office Hour: Wed. 12pm — 1pm
« Office: PETR 219 Office: PETR 359

For questions, send emails to csce638-ta-25s@lists.tamu.edu

mailto:khhuang@tamu.edu
mailto:rahulbaid@tamu.edu
mailto:csce638-ta-25s@lists.tamu.edu

Lecture Plan

« Count-Based Word Vectors
« Prediction-Based Word Vectors
« Evaluation for Word Vectors

Recap: A General Framework for Text Classification

Textx —

_

Feature
(Representation)

J

Classifier
(Model)

—> Label y

- Teach the model how to understand example x

Recap: A General Framework for Text Classification

Textx —

_

Feature
(Representation)

J

- Teach the model how to make prediction vy

Classifier
(Model)

—> Label y

Recap: Bag-of-Words and N-Grams

Textx —

-

Feature
(Representation)

J

Classifier

(Model) —> Label y

- Teach the model how to understand example x

« Convert the text to a mathematical form

- The mathematical form captures essential characteristics of the text

- Bag-of-words and n-grams

We will discuss “learnable”
features today!

Bag-of-Words and N-Gram Features

Bob likes Alice very much A/ice likes Bob very much
...0110... X = .. 0001 ..

/

BoW (unigram) features Bigram features

We can consider trigrams, 4-grams, ...

Encode a text to one vector

Words as Vectors

Bob likes Alice very much

| | | | |
W = Whob Wiikes Walice Wvery Wimuch

Use one vector to represent each word
Text = A list of vectors

Advantages?

How to Represent Words?

A simple solution: discrete symbols

One 1, the rest Os

v
Words can be represented by one-hot vectors:

good = [0001000000000O0 0 0]
great = 0000000000000 1O0 0]

bad = [00000001000000 0 Q0]
T T T
good bad great

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Any disadvantages?

10

Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “good restaurant”, we would
like to match documents containing “great restaurant”

But

good = [00010000000000 0 0]
0000000000000 1O00]

great

These two vectors are orthogonal
There is no way to encode similarity of words in these vectors!

Any solutions?

11

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

from nltk.corpus import wordnet as wn

M 1,7 L}

poses ={'n’ : 'noun’, 'v’ : 'verb', 's’ : 'adj (s)', 'a’ : 'ad

for synset in wn.synsets(“bad”):
print("{}: {}".format(poses[synset.pos()],

, ".join([l.name() for | in synset.lemmas()])))

noun: bad, badness

adj: bad

adj (s): bad, big

adj (s): bad, tough

adj (s): bad, spoiled, spoilt
adj: regretful, sorry, bad
adj (s): bad, uncollectible

adj (s): bad, risky, high-risk, speculative
adj (s): bad, unfit, unsound

adj (s): bad, forged

adj (s): bad, defective

adv: badly, bad

12

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

welfare sorry

! !
good = 0101000000000100

great = 0001000000000 1O0 0

bad = [00000001001000 00
T T T
good bad great

u-v

cos(u,v) = Talllv Similarity(good, great) > Similarity(good, bad)

Any disadvantages?

13

Problems with Resources Like WordNet

- Subjective

« A useful resource but missing nuance
- e.g., “sorry” is listed as a synonym for “bad”
- This is only correct in some contexts

- Requires human labor to create and adapt

14

Representing Words by Their Contexts

Distributional hypothesis: words that occur in similar contexts tend to have
similar meanings

J.R.Firth 1957

« “You shall know a word by the company it keeps”
- One of the most successful ideas of modern statistical NLP!

...government debt problems turning into banking crises as happened in 20089...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

These context words will represent banking

15

Distributional Hypothesis

Cl C2 (C3 (4
Cl: Abottleof ison the table. juice 1 1 0 1
C2: Everybody likes . loud 0 0 0 0
_ motor-oil 1 0 0 1

C3: Don’t have before you drive.
chips 0 1 0 1
C4: | bought yesterday. choices 0 1 0 0
wine 1 1 1 1

Words that occur in similar contexts tend to have similar meanings

16

Word Vectors from Word-Word Co-Occurrence Matrix

« Main idea: Similar contexts = Similar word co-occurrence

 Collect a bunch of texts and compute co-occurrence matrix

apple
bread

digital

information

- Words can be represented by row vectors cos(u,v) = ”::”.”‘;”
Word Vector High cosine
similarity!
shark computer data eat m sugar
0 0 0 3 0 2
0 0 0 c 0 1
0 6 5 0 2 0
0 4 10 0 2 0 \
Low cosine
Most entries are Os = sparse vectors similarity!

17

Issues with Word-Word Co-Occurrence Matrix

- Using raw frequency counts is not always very good (why?)

- Some frequent words (e.g., the, it, or they) can have large counts

the computer data eat result sugar the
apple 0 0 0 8 0 2 104
bread 0 0 0 9 0 1 95
digital 0 6 5 0 2 0 101

Similarity(apple, bread) = 0.994710
Similarity(apple, digital) = 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts

67/
76
65

18

Pointwise Mutual Information

Pointwise Mutual Information (PMI)

Do events x and y co-occur more or less than if they were independent?

P(x,y)

PMI(x,y) = 1082 52550

- PMI=0-> x and y occur independently = co-occurrence is as expected
« PMI>0 -2 x and y co-occur more often than expected
- PMI<0-> x and y co-occur less often than expected

19

Co-Occurrence Matrix with Positive PMI

Positive Pointwise Mutual Information (PPMI)

PPMI(x,y) = max <log2 hx.y) ,O)
P(x)P(y)
the computer data eat result sugar the
apple 0 0 0 1.80 0 0.35 0.08
bread 0 0 0 1.54 0 0.29 0
digital 0 1.47 1.22 0 0.61 0 0.10

Similarity(apple, bread) = 0.995069
Similarity(apple, digital) = 0.010795

0.14
0.06

20

Sparse Vectors vs. Dense Vectors

« The vectors in the word-word occurrence matrix are

- Long: vocabulary size
 Sparse: most are O’s
« Can we have short short (50-300 dimensional) and dense (real-valued) vectors?
- Short vectors are easier to use as features in ML systems
- Dense vectors may generalize better than explicit counts

« Sparse vectors can’t capture high-order co-occurrence
- Wy co-occurs with “car”, w, co-occurs with “automobile”

- They should be similar, but they aren’t, because “car” and “automobile” are distinct
dimensions

 In practice, they work better!

21

How to Get Dense Vectors?

- Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

1 i __000...Gv__ il
V| x|V V| x |V| V| x |V V| x V| Word Vector

Only keep the top k singular values

_ T B i —0-1 0 0 P 0 -M

0 oo 0 ... O x|V L |

x || w || e V| xk

i i 1L 0O 0 0 ... Ok _
Vx|V V| xk kxk

Count-Based Word Vectors

Text x ——s Feature N Classifier . abel
(Representation) (Model) y

_ J _ y

- Use one vector to represent each word

- Get word vectors by singular value decomposition (SVD) of PPMI weighted
Co-occurrence matrix

Prediction-Based Word Vectors

Textx —

_

Feature
(Representation)

J

Classifier
(Model)

—> Label y

- Can we learn word vectors directly from text?

24

Word2Vec

- Efficient Estimation of Word Representations in Vector Space, 2013

« 40000+ citations

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA
tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA
gcorrado@google.com

Kai Chen
Google Inc., Mountain View, CA
kaichenlgoogle.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

25

Word Embeddings as Learning Problem

 Learning vectors (also called embeddings) from text for representing words

« |nput:
- A large text corpus
e - - : —0.224
- Wikipedia + Gigaword 5: 6B tokens 0.479
- Twitter: 27B tokens Vapple = 0.871
- Common Crawl: 840B tokens _00120311
- Vocabulary V
- Vector dimension d (e.g., 300) 0.257
| 0.587
° Output Vdigital = —0.972
—0.456

[] . . . d
Mapping function f:V - R —0.002

26

Word2Vec: Overview

- Main idea: we want to use words to predict their context words
- Context: a fixed window of size m

Use center word w; to predict context words Wy _,,, t0 Wiy,

P(wg_p | we) P(Weyp | W)

problems turning banking crises as

\ J \ J
1 Y l Y /

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Words that occur in similar contexts tend to have similar meanings

27

Word2Vec: Overview

- Main idea: we want to use words to predict their context words

« Context: a fixed window of size m

Classification Problem

—

Use center word w; to predict context words wy_,,, t0 We

P(b|a) = given the center word
is a, what is the probability that
b is a context word?

P(Wt—z | Wt) P(Wt+2 | Wt) PE—
P(wi_q | W) P(Weiq | We)
problems turning banking crises as

l T P Y /
outside context words center word outside context words
in window of size 2 at position t in window of size 2

P(- |a) is a probability
distribution defined over V:

We will define the distribution soon!

28

Word2Vec: Overview

P(we-z [we) P(Wiip | Wp) Collect into training data
P(w_q1 | W) PWey1 | we) (into, problems)

(into, turning)

(into, banking)

problems turning

banking crises as

| Y J — \ v J . .

outside context words center word outside context words (IﬂtO, CI’ISES)

in window of size 2 at position t in window of size 2

P(wi_y | wp) P(Weyo | We) : -
:) Collect into training data
P(w;_{ |W P(w w : :
Wiy | we) cr1 | We (banking, turning)

problems turning into crises as .. (banking, into)

| , R , , (banking, crises)
outside context words center word outside context words :
in window of size 2 at positiont in window of size 2 (ba nki ng, aS)

Maximize the likelihood
P(problems|into)X P(turning|into)X P(banking|into)X P(crises|into)
X P(turning|banking)Xx P(into|banking)Xx P(crises|banking)Xx P(as|banking)

29

Word2Vec: Likelihood

P(wi—z | wy) P(Wepo | We)

P(wi_q | W) P(Weyq | We)

problems turning banking crises as

l T o Y /
outside context words center word outside context words
in window of size 2 at position t in window of size 2

For each positiont = 1, ..., T, predict context words within a window of fixed

size m, given center word w;

0 all parameters to be optimized

/

Z

Likelihood = L(0) =

1_[{P(Wt+]~| we ; 0)

(g
Il |'ﬂ
—

—Mms<js<m,j+9

Probability over

all vocabulary V

For each positiont = 1, ...,T Likelihood for all context words given center word w;

30

Word2Vec: Objective Function

P(wi—z | wy) P(Wepo | We)
P(we_q | we) P(Weyq | We)

problems turning banking crises as

l T o Y /
outside context words center word outside context words
in window of size 2 at position t in window of size 2

The objective function J(0) is the (average) negative log likelihood

1
J(©) = —=log £(6) = - z > ogP(wey|we;0)

—-msj<m,j+0

We minimize the objective function (also called cost or loss function)

31

How to Define Probability?

Question: how to calculate P(WH_]" we; 0)?

Answer: we have two sets of vectors for each word in the vocabulary
u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

We consider Inner product u,, Vi, @s the score to measure how likely the
context word w, ; appears with the center word wy, the larger the more likely!

eXp(th) VWt+j)

Liev €XP(Uy, * Vi)

P(WH_]-‘ W ; 0) = 0 = {{uy}, {v,}} all parameters

32

How to Define Probability?

We have two sets of vectors for each word in the vocabulary

u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

P(Wt+j‘ Wy ;0) =

/

exp(th ’ VWt+j)

Normalize over entire vocabulary
to give probability distribution

ZkEV eXp(th) Vk)

The score to indicate how likely the context
word w; , ; appears with the center word w;

Softmax function: mapping arbitrary values to a probability distribution

softmax(t) =

e

Why Two Sets of Vectors?

We have two sets of vectors for each word in the vocabulary
u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

exp(uwt ’ VWt+j)

ZkEV eXp(th) Vk)

P(Wt+j‘ Wy ;0) =

- Scores can be asymmetric
- |tis not likely that a word appears in its own context

34

How to Train Word Vectors?

Parameters: 6 = {{uk} {(vi}}

Objective function: J(8) = ——z 2 logP(WHj‘ we; 0)

1 —m<j<m,j#0

Our goal: find parameters 6 that minimize the objective function J(8)

Cost

A

Solution: stochastic gradient descent (SGD)

Learning step

- Randomly initialize parameters 6
« Foreachiteration § «— 6 —nVy J(6) Minimum

/ I - - > 0

_ . Random
Learning step Gradient initial value

>

35
https://insightfultscript.com/collections/programming/machine-learning/sgd/

Computing the Gradients

Objective function

1) = ——2

)

log P(WH]-‘ we; 0)

—-m<j<m,j#0

TZ

-_m=<

)

— logP(WHj‘ we; 0)

jsm,j+b

The gradients can be calculated separately!

For simplicity, we consider one pair of center/context words (o, ¢)

y = —logP(clo;0) = —log(

exp(U, - V¢)) dy dy
ZREV exp(uo) Vk)

du, Jv,

We need to compute this!

36

Computing the Gradients

exXp (uo) Vc))

Zkev eXp(uo : Vk)

y = —logP(clo) = — log(=|—log(exp(u, - v.)) i+ log (Z exp (U, ’Vk)>

kev
= —u, "V,
dlog(x) 1 dexp(x)
0x :; Z anp(uo) Vk) ox exp(x)
dy _ d(—u, - v + log(Qkey exp(u, « Vi))) I eV du,
du, du, ’ ZkEV exp(U, * Vi)
Dkey €xp(u, - Vi) Vi z exp(u, - Vi) Vi
= —V, + = -V, +
Dkey €Xp(u, - Vi) kEVZkEV exp(U, * Vi)
_ Oy
==Vc+) P(klo)vg —— = —1(k = c)u, + P(k|o)u,
keVv OV

Similar calculation step 37

Training Process

- Randomly initialize parameters u;, v;
« Walk through the training corpus and collect training data (o, ¢)

P(we—z | we) P(Weip | We)

P(we_q | we) P(Weiq | We)

problems turning banking crises as

L Y J _'_; (' [
outside context words center word outside context words
in window of size 2 at position t in window of size 2
0y dy
u, <—u, —n— Vi, —V,—n— VkeV

auo aVk

Negative Sampling

Issue: every time we get one pair of (0, ¢), we have to update v, with

all the words in the vocabulary.
dy

= Vk eV
"auo

u, < u, Vi < Vg

_ nm
Negative sampling: instead of considering all the words in V, we randomly

sample K(5-20) negative examples

exp(uo) Vc)
ZkEV exp(uo . Vk)

) - = log(exp(uo ’ Vc)) + log (Z exp(uo) Vk))

Softmax y = —log<
kev

K
Negative sampling y = —log(a(u, - v)) — Z Ej-pw)log(a(—u, - v;))
=1

1
1+e™™*

o(x) =

Continuous Bag of Words (CBOW) vs Skip-Grams

INPUT PROJECTION

w(t-2)

w(t-1)

w(t+1)

w(t+2)

N\

SUM

CBOW

OUTPUT

4-1 w(t)

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

7

Skip-gram

40

	Slide 0: CSCE 638 Natural Language Processing Foundation and Techniques
	Slide 1: Course Materials
	Slide 2: Assignment 0
	Slide 3: Course Staff
	Slide 4: Lecture Plan
	Slide 5: Recap: A General Framework for Text Classification
	Slide 6: Recap: A General Framework for Text Classification
	Slide 7: Recap: Bag-of-Words and N-Grams
	Slide 8: Bag-of-Words and N-Gram Features
	Slide 9: Words as Vectors
	Slide 10: How to Represent Words?
	Slide 11: Problem with Words as Discrete Symbols
	Slide 12: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 13: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 14: Problems with Resources Like WordNet
	Slide 15: Representing Words by Their Contexts
	Slide 16: Distributional Hypothesis
	Slide 17: Word Vectors from Word-Word Co-Occurrence Matrix
	Slide 18: Issues with Word-Word Co-Occurrence Matrix
	Slide 19: Pointwise Mutual Information
	Slide 20: Co-Occurrence Matrix with Positive PMI
	Slide 21: Sparse Vectors vs. Dense Vectors
	Slide 22: How to Get Dense Vectors?
	Slide 23: Count-Based Word Vectors
	Slide 24: Prediction-Based Word Vectors
	Slide 25: Word2Vec
	Slide 26: Word Embeddings as Learning Problem
	Slide 27: Word2Vec: Overview
	Slide 28: Word2Vec: Overview
	Slide 29: Word2Vec: Overview
	Slide 30: Word2Vec: Likelihood
	Slide 31: Word2Vec: Objective Function
	Slide 32: How to Define Probability?
	Slide 33: How to Define Probability?
	Slide 34: Why Two Sets of Vectors?
	Slide 35: How to Train Word Vectors?
	Slide 36: Computing the Gradients
	Slide 37: Computing the Gradients
	Slide 38: Training Process
	Slide 39: Negative Sampling
	Slide 40: Continuous Bag of Words (CBOW) vs Skip-Grams

