CSCE 638 Natural Language Processing Foundation and Techniques

Lecture 7: Transformers

Kuan-Hao Huang

Spring 2025

(Some slides adapted from Chris Manning, Karthik Narasimhan, Danqi Chen, and Vivian Chen)

Project Sign-Up

- <u>https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylam</u> <u>XuV7Dtg7cBD2EU/edit?usp=sharing</u>
- 3~4 members per team
 - Form teams on your own
 - No solo teams (We have too many students!)

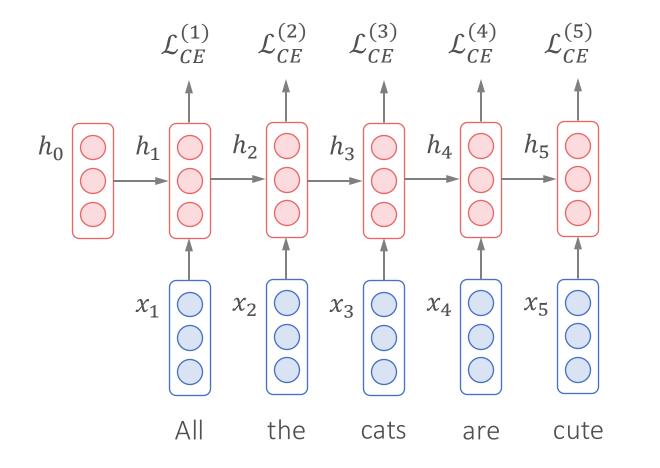
3~4 members per team									
	Project Topic	Member 1 (Name)	Member 1 (E-mail)	Member 2 (Name)	Member 2 (E-mail)	Member 3 (Name)	Member 3 (E-mail)	Member 4 (Name)	Member 4 (E-mail)
Team 1									
Team 2									
Team 3									
Team 4									
Team 5									
Team 6									
Team 7									
Team 8									
Team 9									
Team 10									
Team 11									
Team 12									

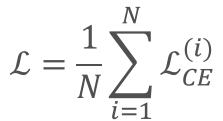
Lecture Plan

- Transformers
 - Attention
 - Self-Attention
 - Transformer Encoder
 - Positional Encoding

Recap: RNN as Encoder

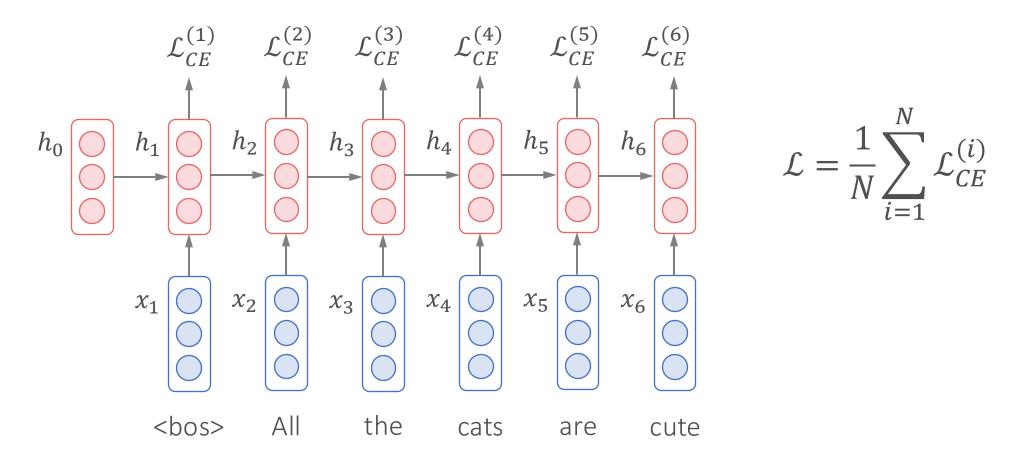
• Sequential labeling: A sequence of dependent classification



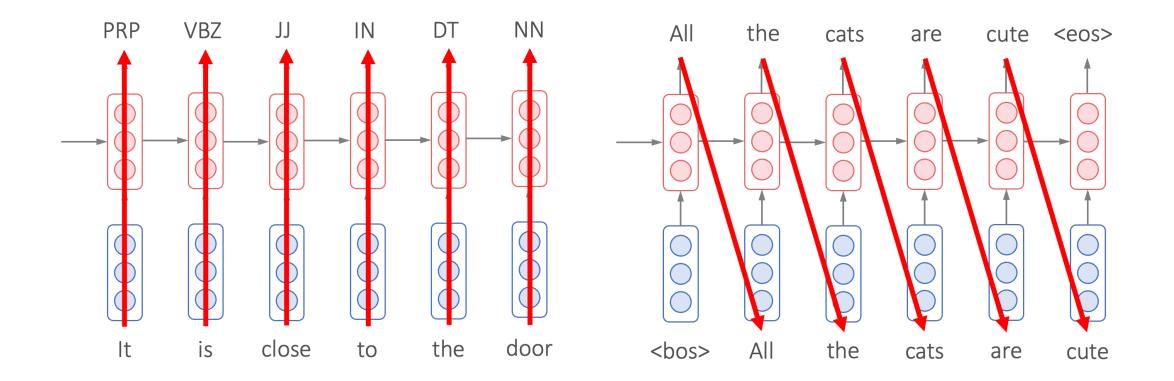


Recap: RNN as Decoder

- RNN Language Modeling
 - Generation is a sequence of word classification

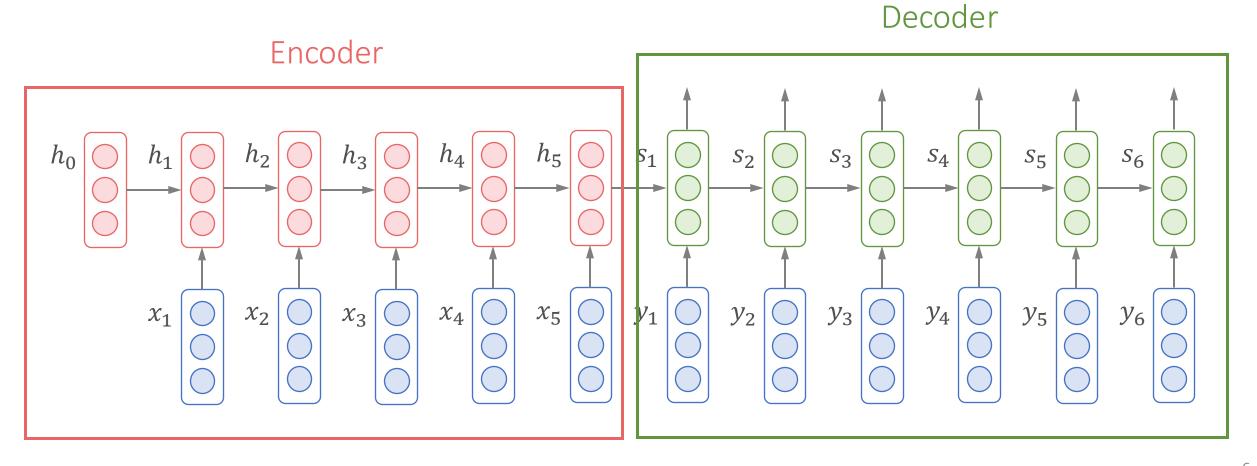


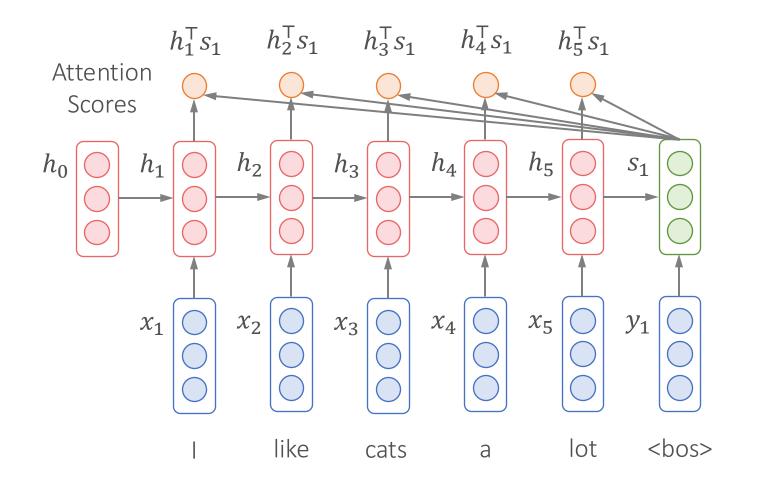
Recap: Encoder vs. Decoder



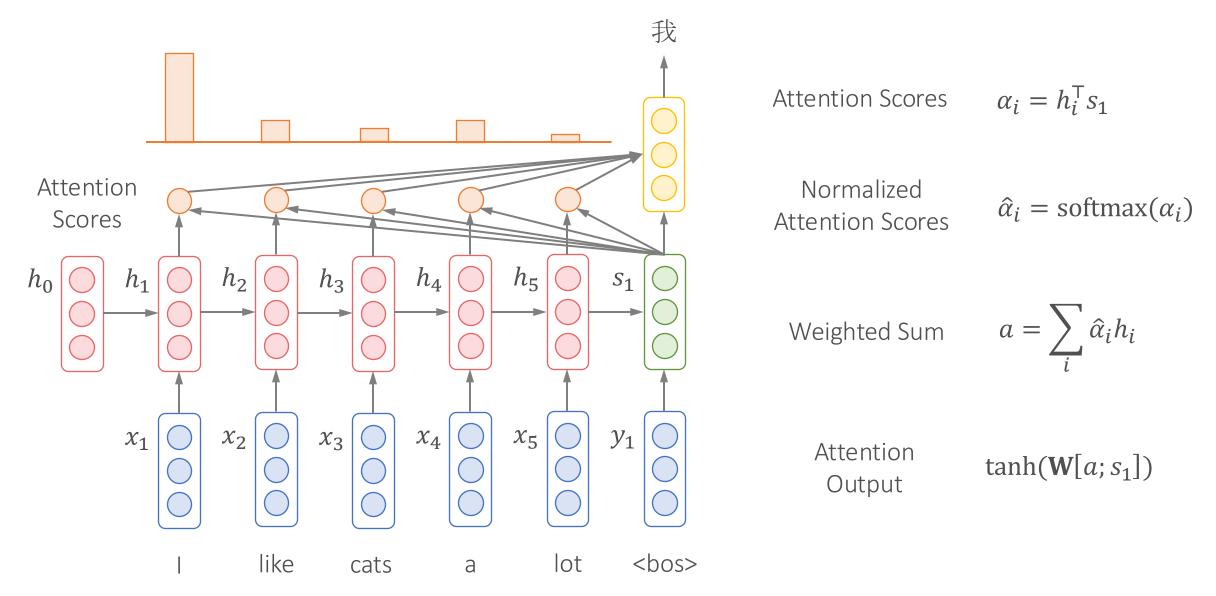
Recap: Sequence-to-Sequence Models (Seq2Seq)

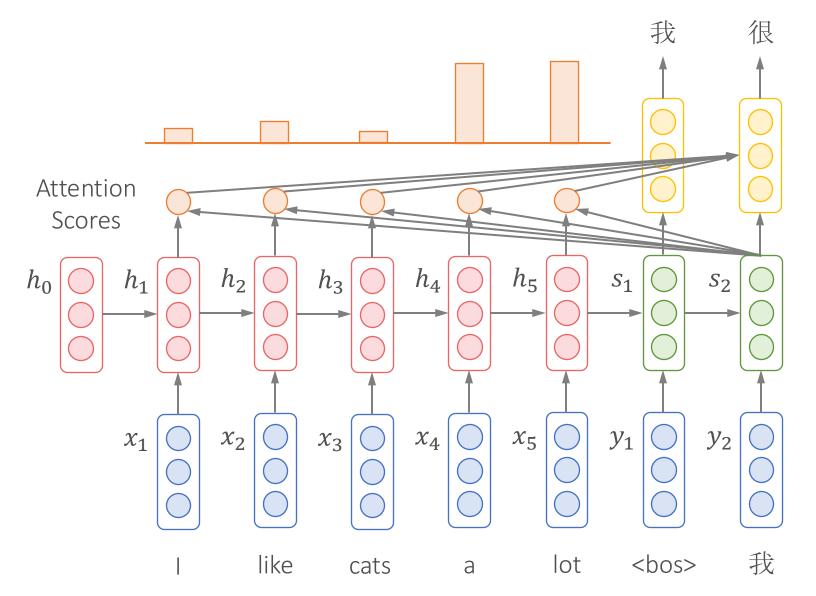
• When we need understanding and generation at the same time

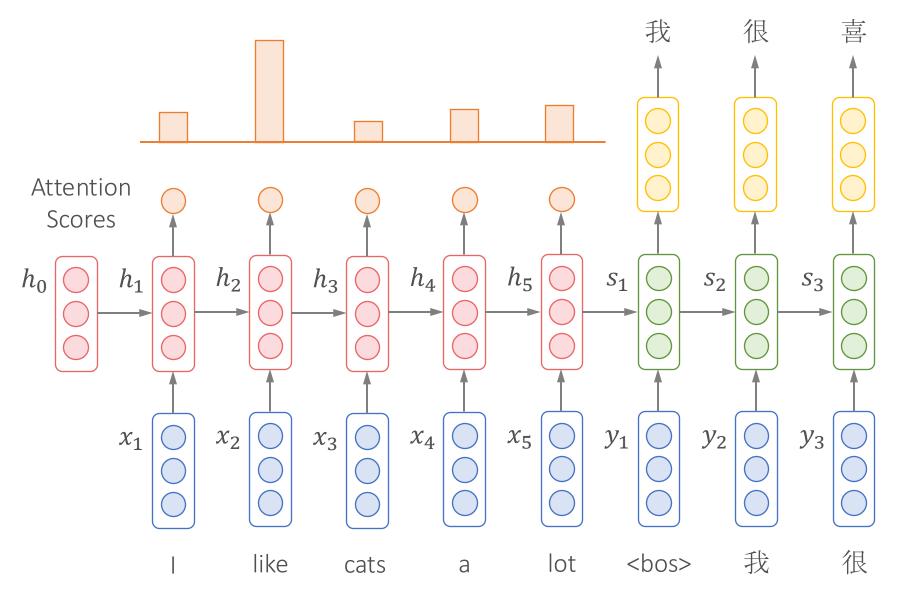


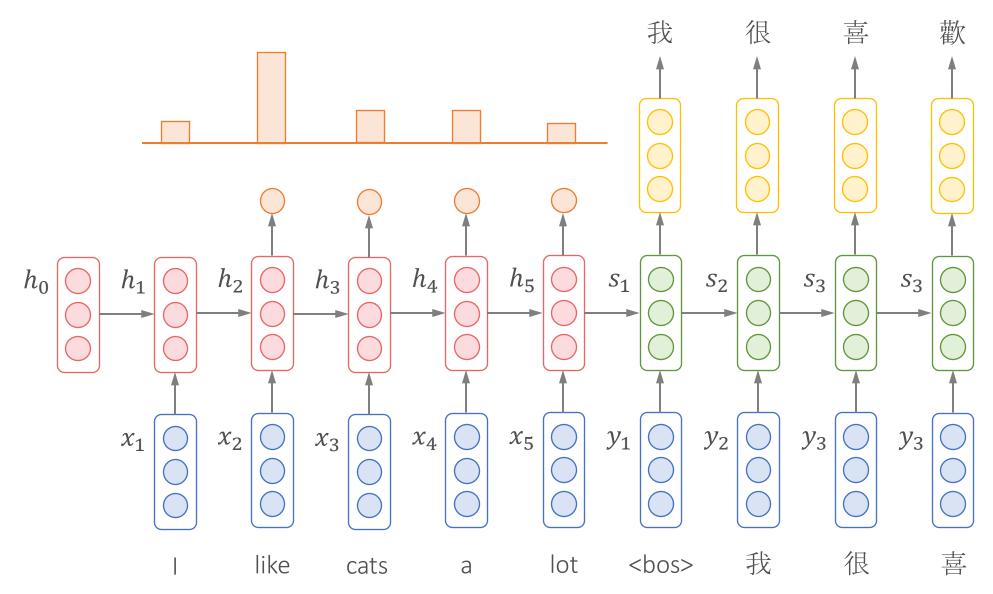


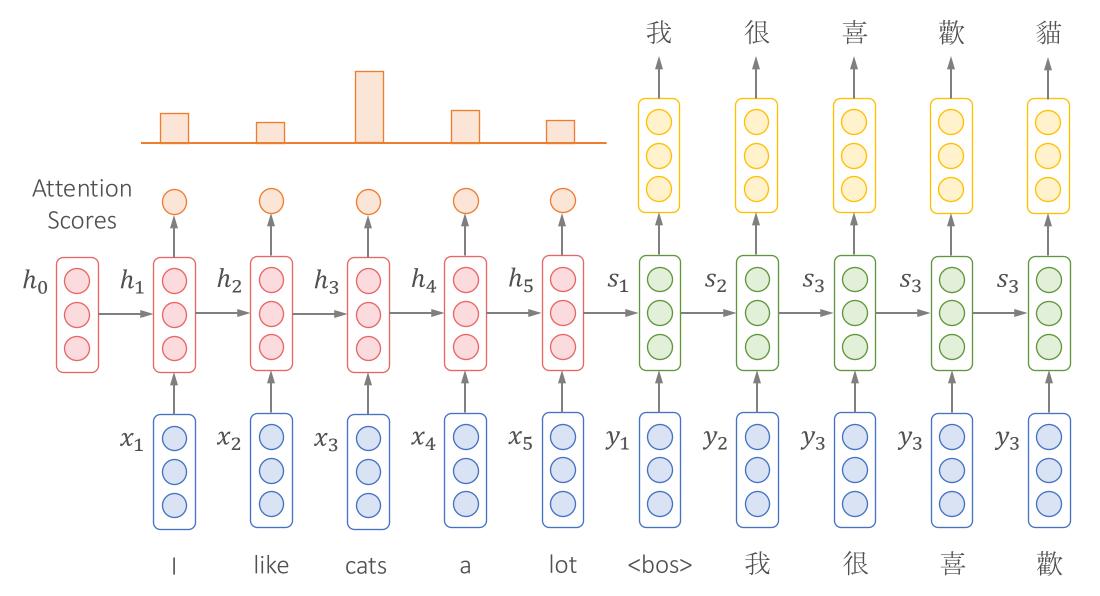
Attention Scores $\alpha_i = h_i^{\mathsf{T}} s_1$

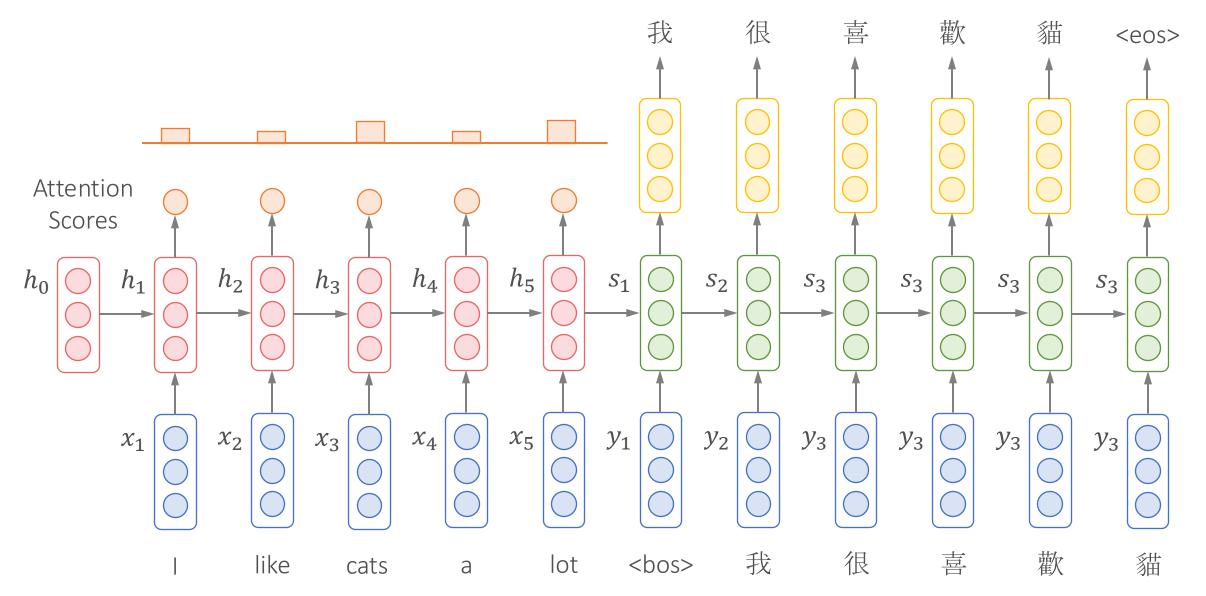












Different Types of Attention

Dot-Product Attention

 $h_i^{\mathsf{T}} s_j$

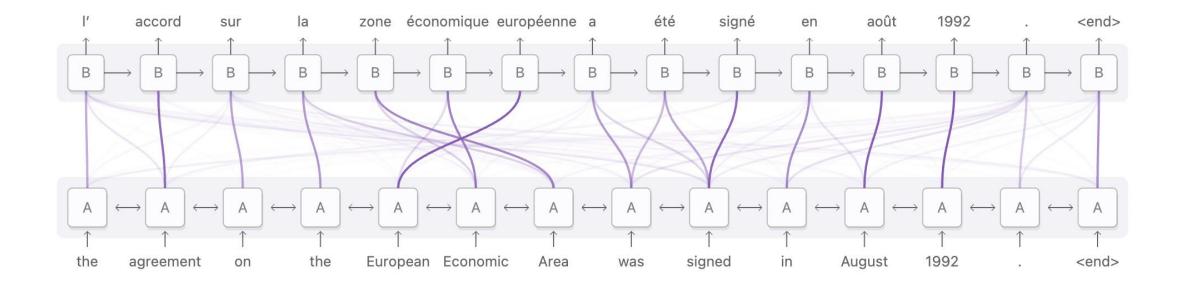
Multiplicative Attention

 $h_i^{\mathsf{T}}Ws_j$

Additive Attention

 $v^{\mathsf{T}} \operatorname{tanh}(W_1 h_i + W_2 s_j)$

Machine Translation with Attention



Speech Recognition with Attention

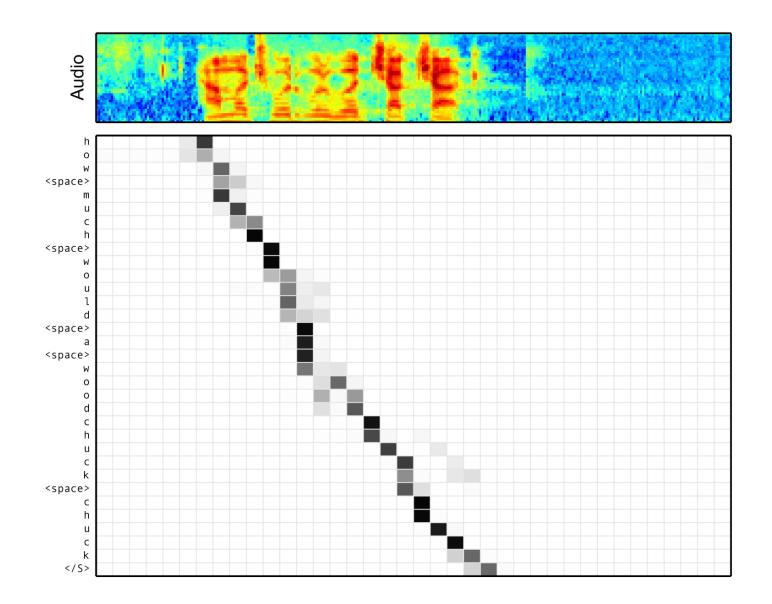
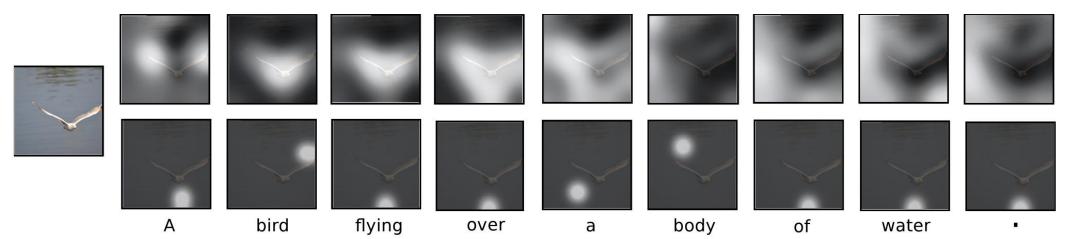


Image Captioning with Attention



A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

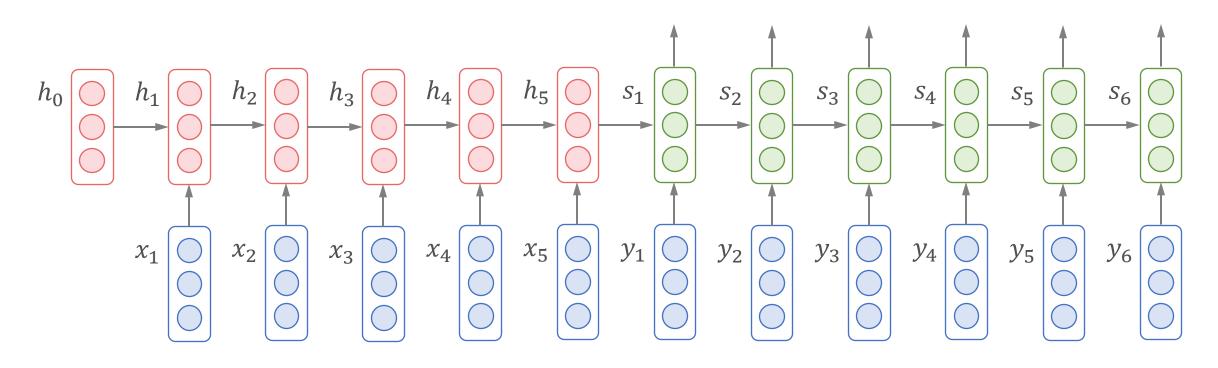
A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

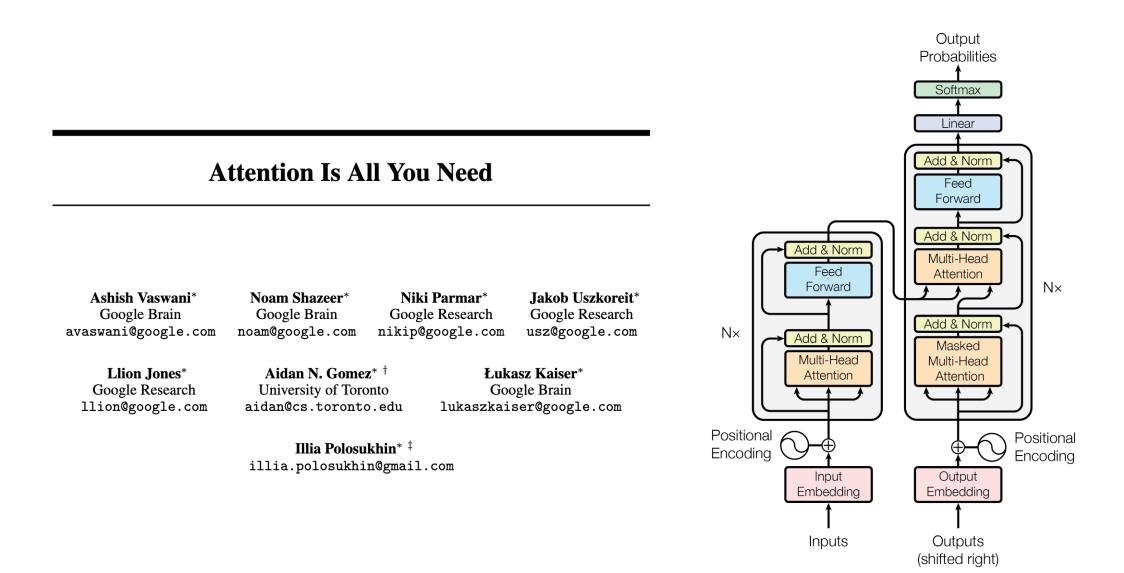
A giraffe standing in a forest with trees in the background.

Issues with RNN

- Longer sequences can lead to vanishing gradients → It is hard to capture long-distance information
- Lack parallelizability

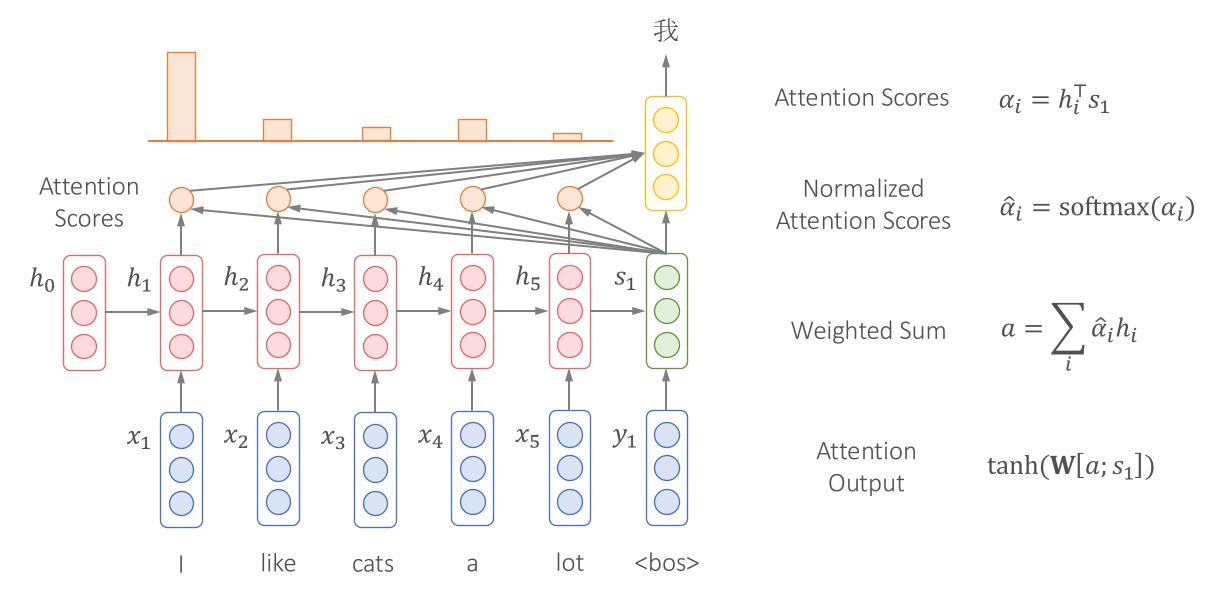


Transformers: Attention Is All You Need!

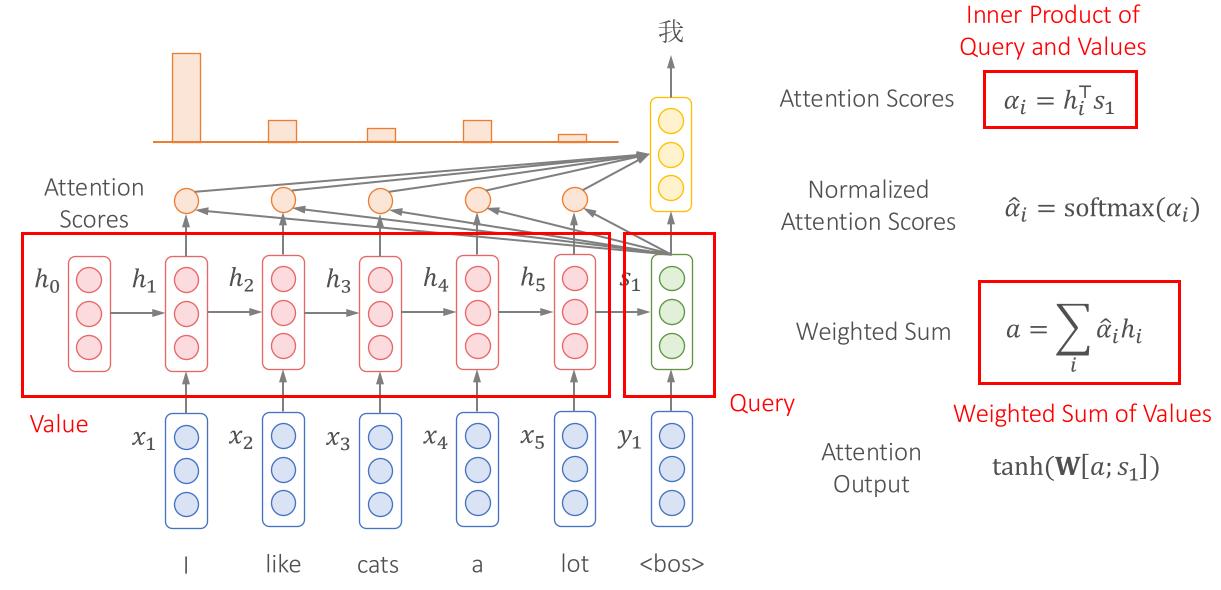


Attention Is All You Need, 2017

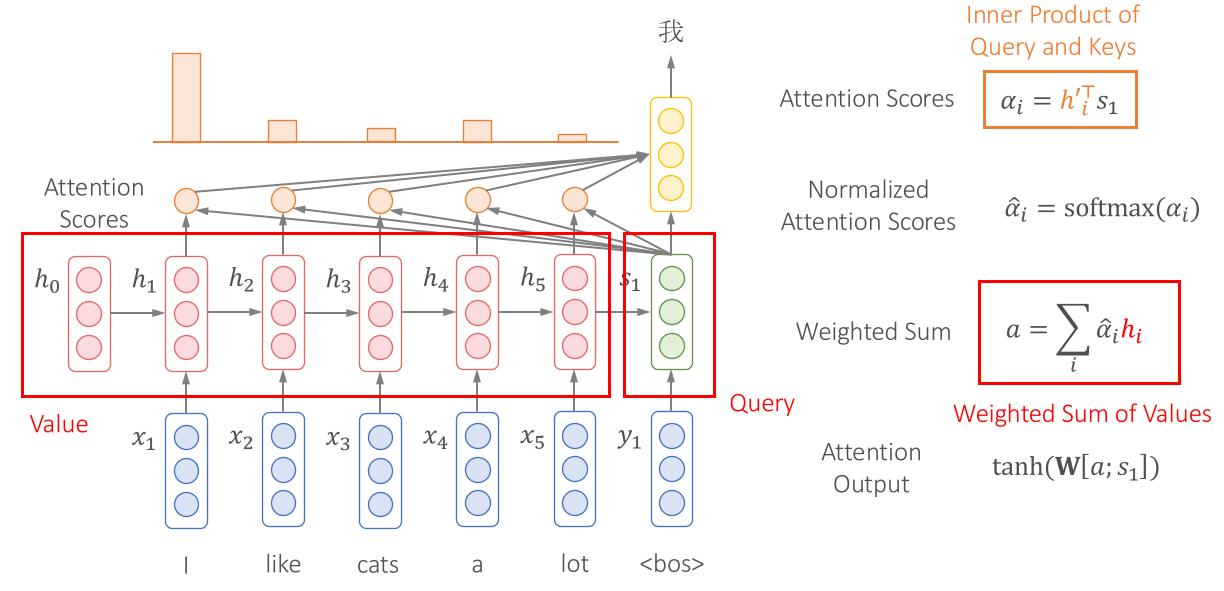
Look Back at RNN with Attention



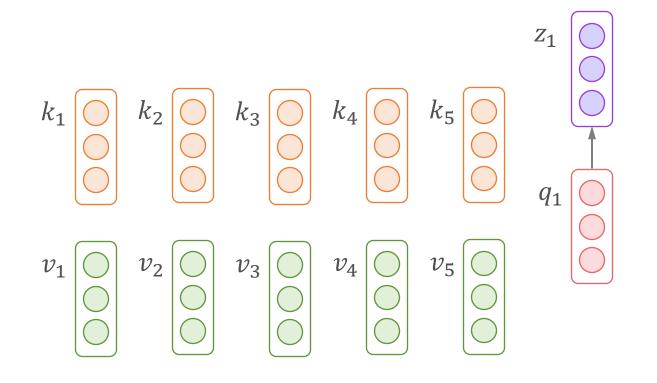
Look Back at RNN with Attention



Look Back at RNN with Attention – General Version



Attention – General Version



Attention Scores

$$\alpha_i = k_i^{\mathsf{T}} q_1$$

Normalized Attention Scores

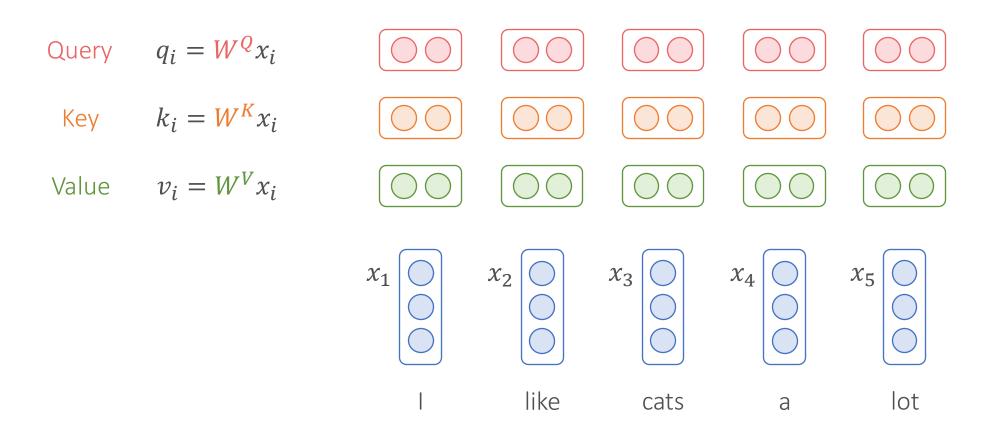
 $\hat{\alpha}_i = \operatorname{softmax}(\alpha_i)$

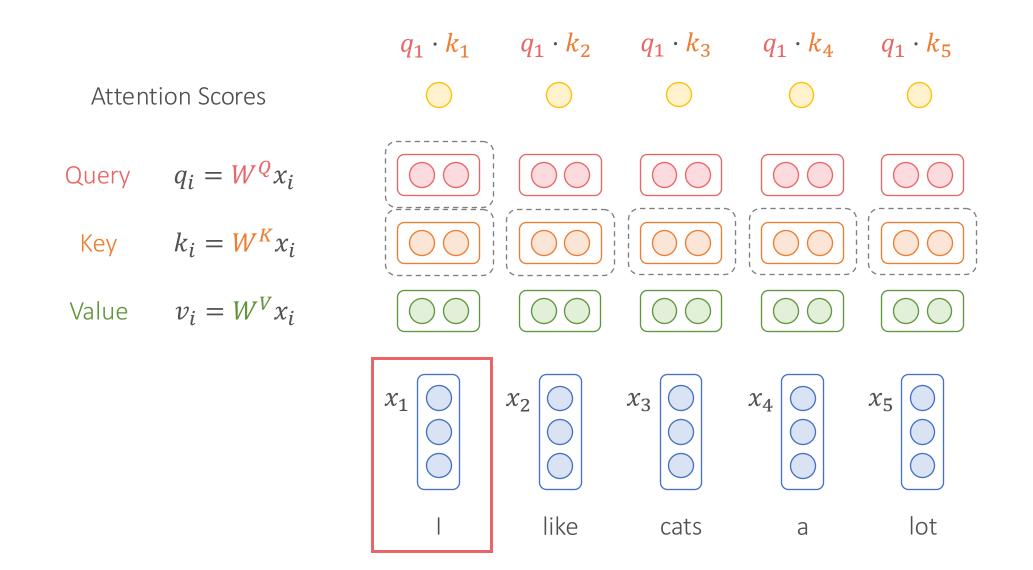
Weighted Sum

$$z_1 = \sum_i \hat{\alpha}_i v_i$$

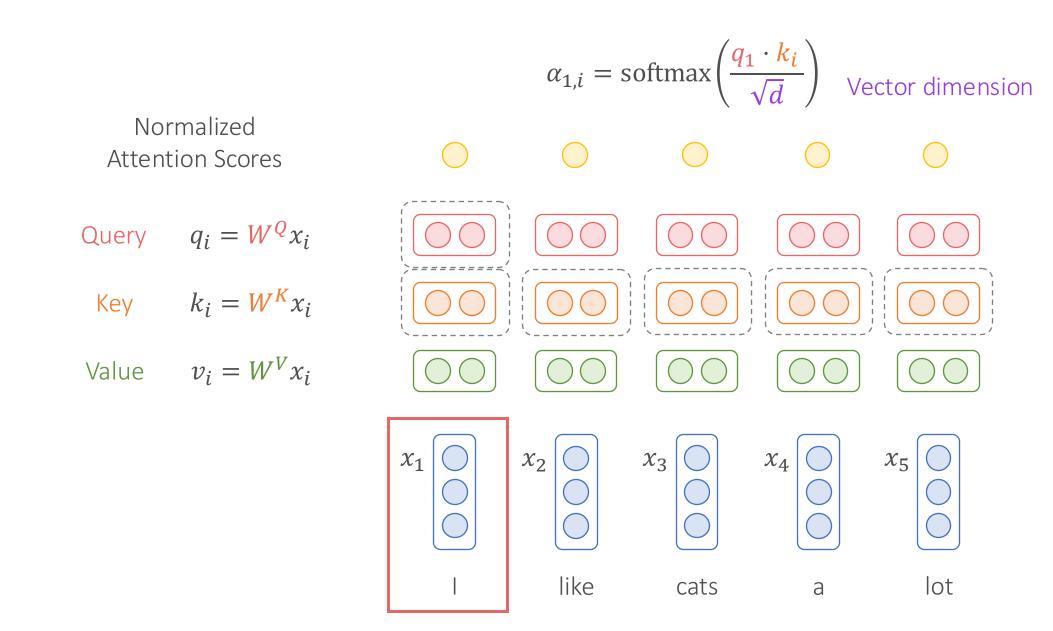
From Attention to Self-Attention

- Self-attention = attention from the sequence to itself
 - The queries, keys and values come from the same source
- Any word can be a query
- Any word can be a key
- Any word can be a value





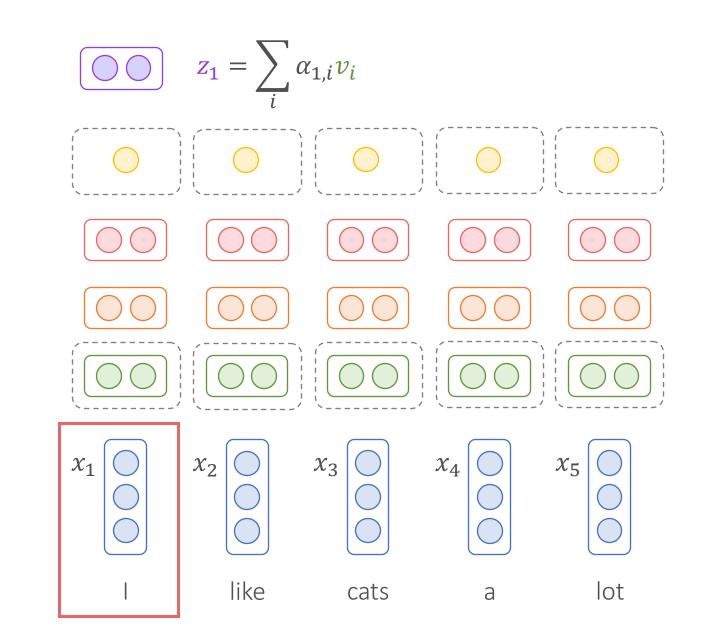
26

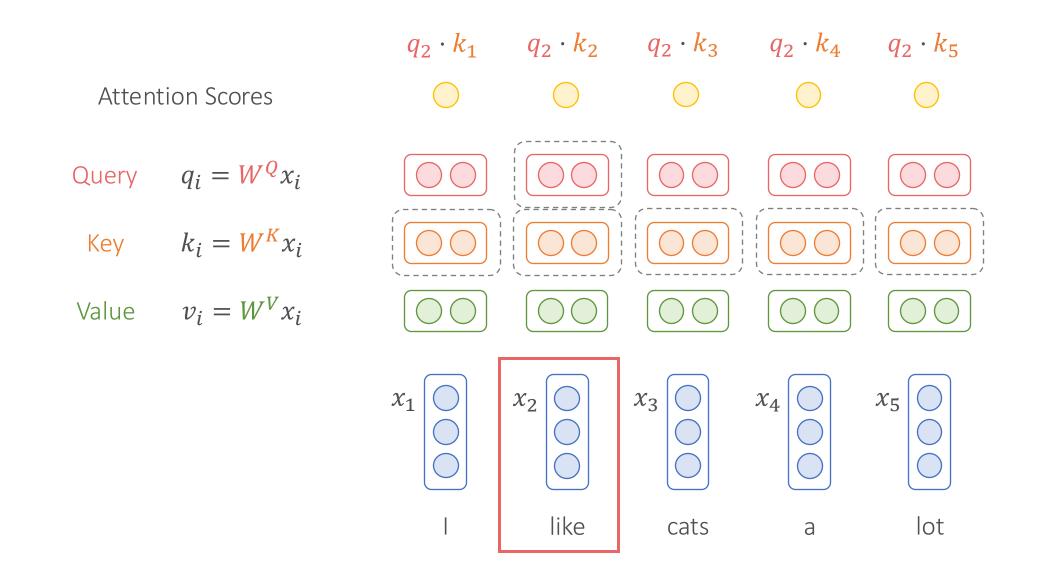


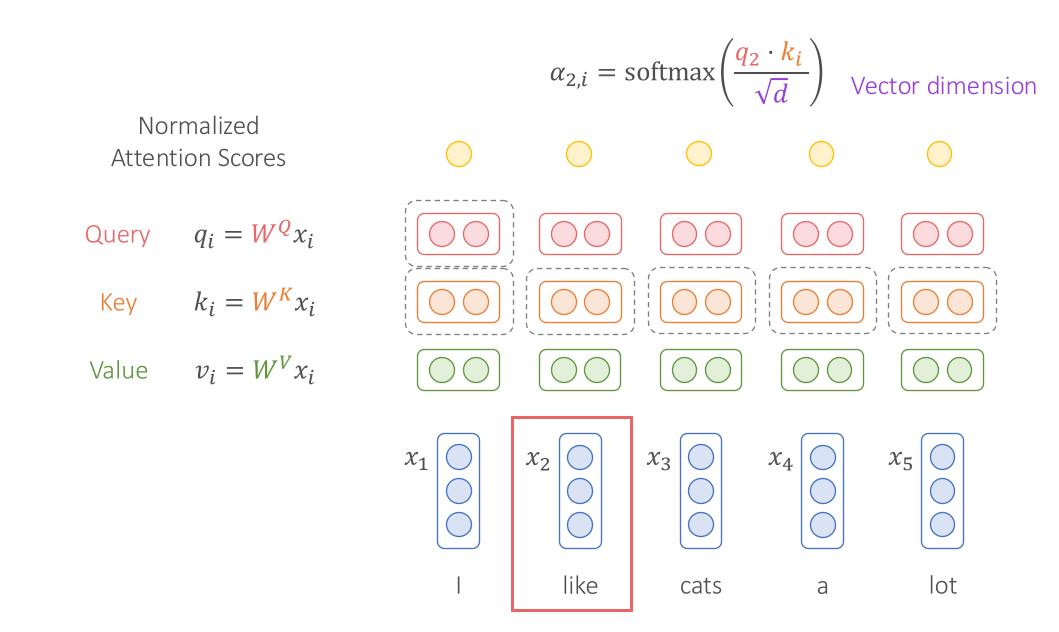
Weighted Sum

Normalized Attention Scores

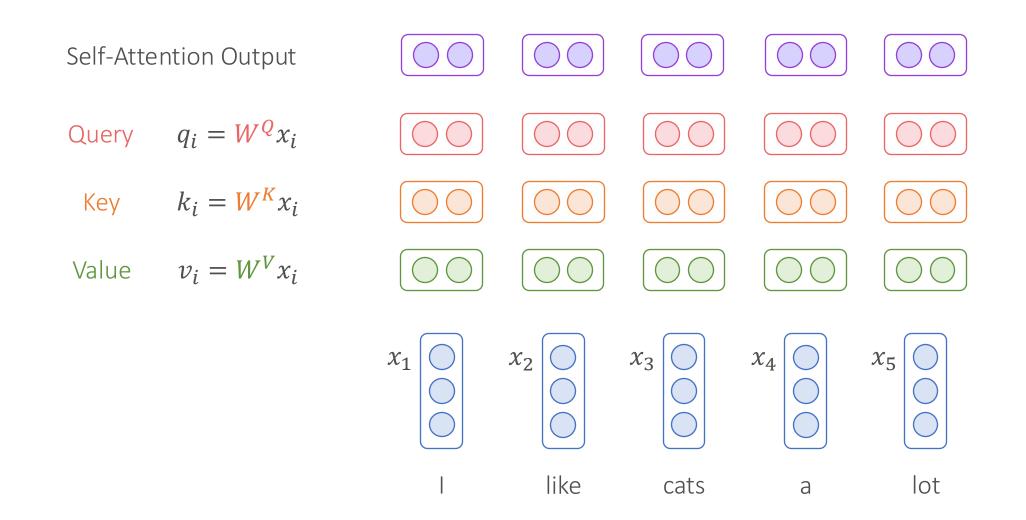
Query $q_i = W^Q x_i$ Key $k_i = W^K x_i$ Value $v_i = W^V x_i$



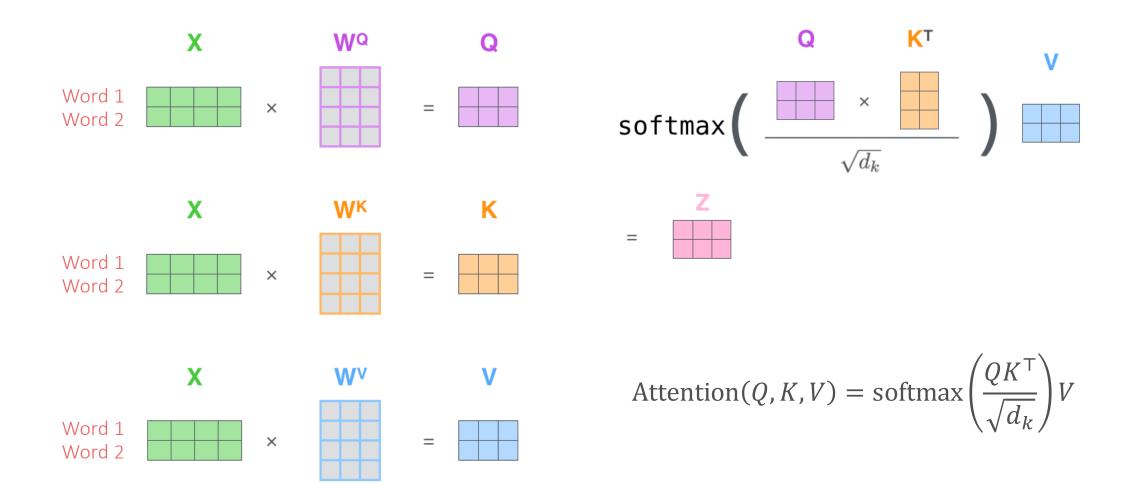




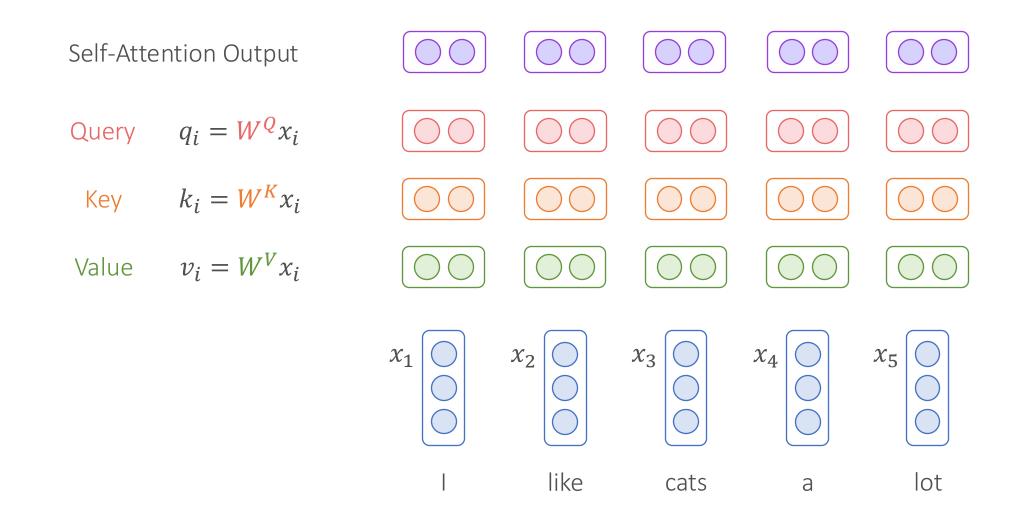
 $z_2 = \sum_i \alpha_{2,i} v_i$ Weighted Sum Normalized \bigcirc \bigcirc Attention Scores () $q_i = W^Q x_i$ Query $k_i = W^K x_i$ Key $v_i = W^V x_i$ Value x_1 x_5 x_2 x_3 x_4 like lot cats а



Self-Attention – Matrix Form



Single-Head Attention

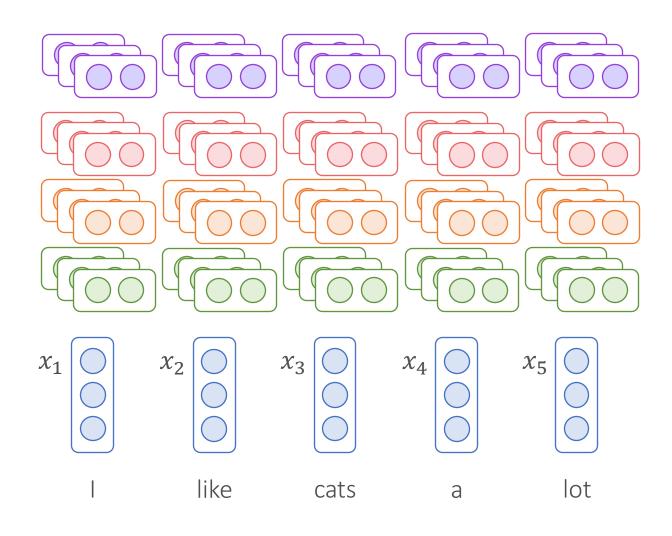


Multi-Head Attention

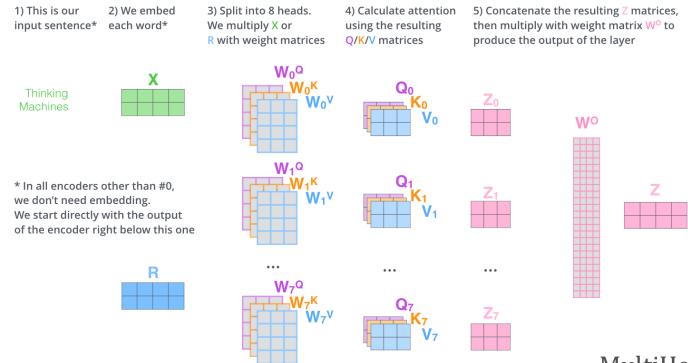
Each attention head focuses on different parts of understanding!

Multi-Attention Output

Query $q_i = W_j^Q x_i$ Key $k_i = W_j^K x_i$ Value $v_i = W_j^V x_i$



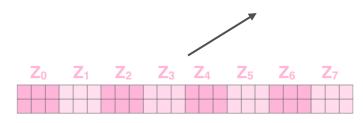
Multi-Head Attention – Matrix Form



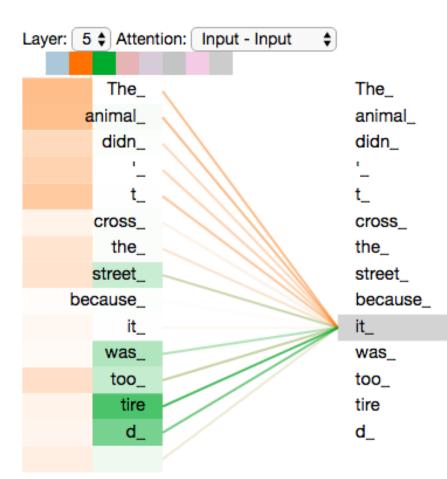
Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$

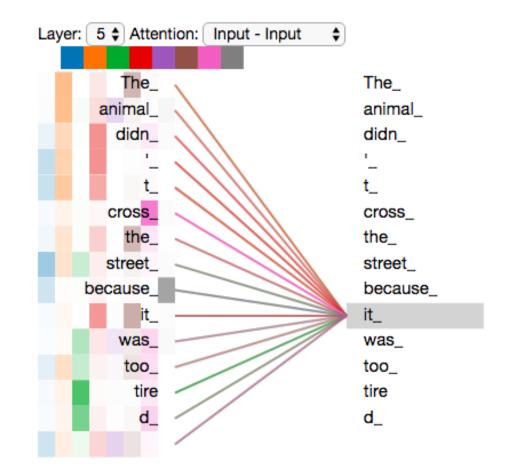
head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^0$

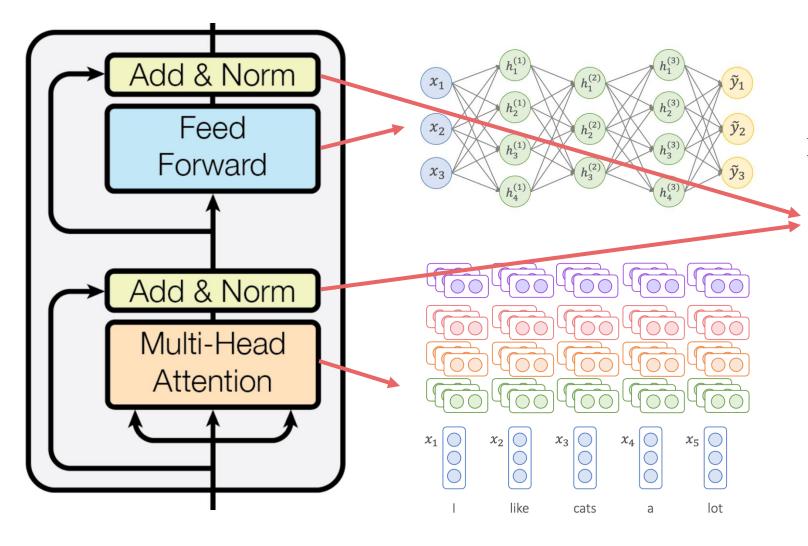


What Does Multi-Head Attention Learn?





Transformer Layer

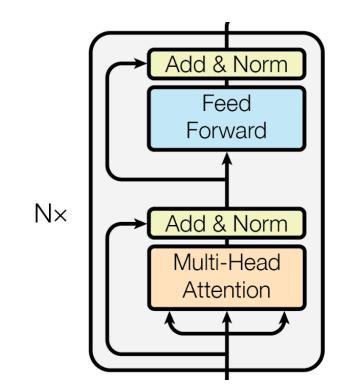


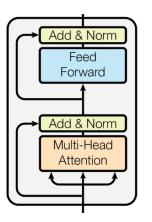
LayerNorm(x + Sublayer(x))

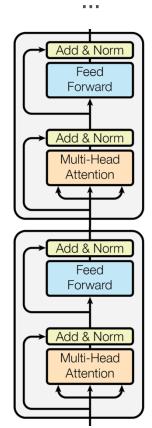
$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

Residual connection (He et al., 2016) Layer normalization (Ba et al., 2016)

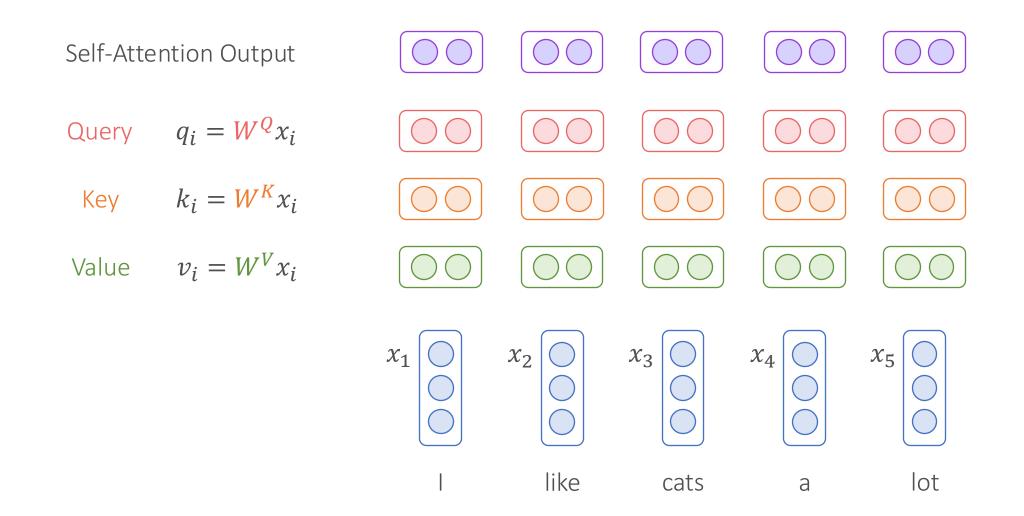
Transformer Encoder



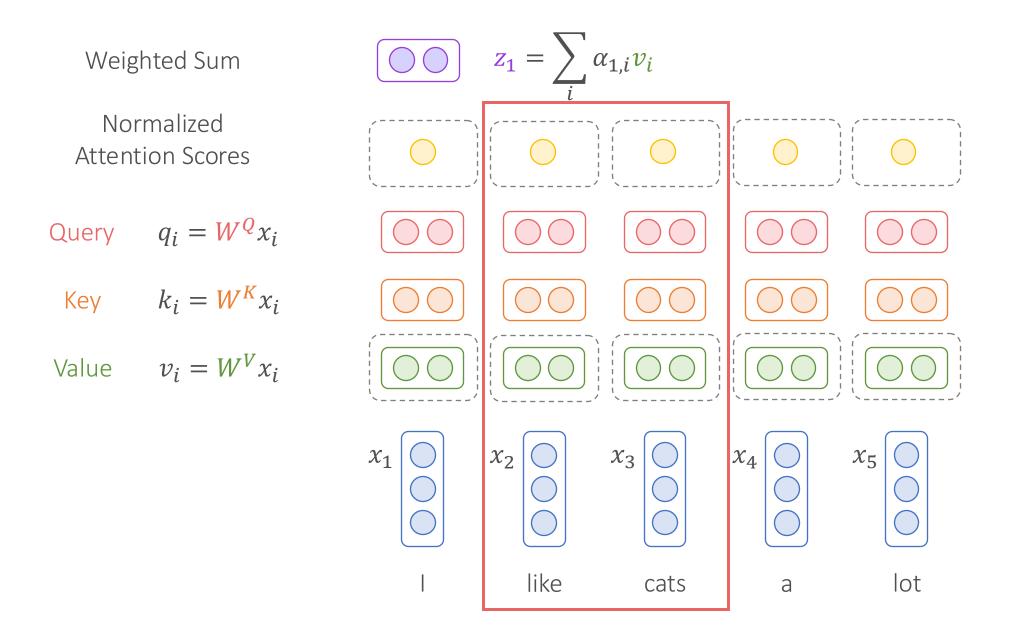




How About Word Order?

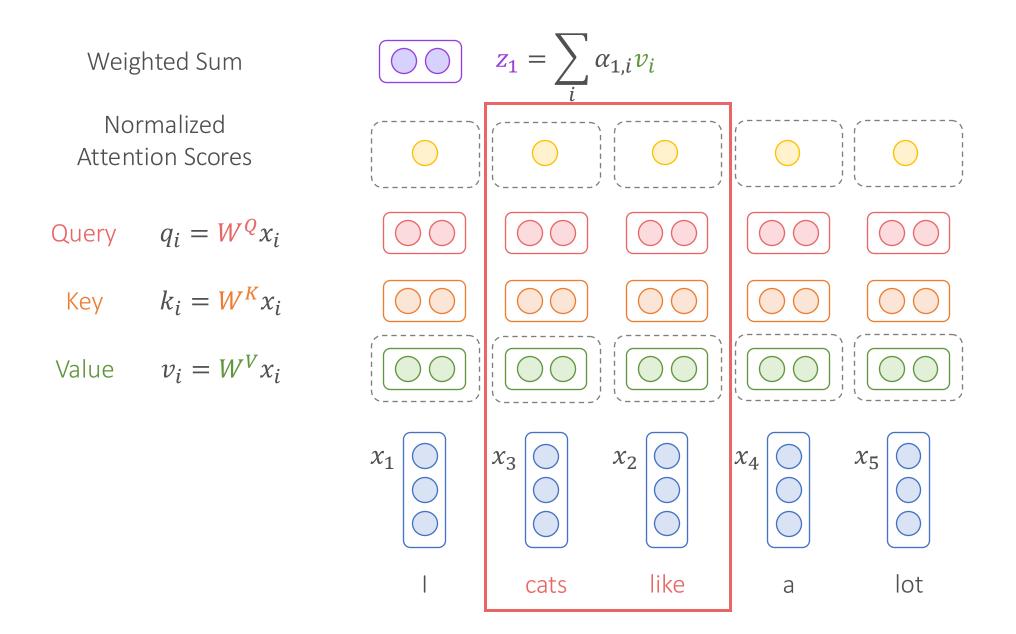


How About Word Order?



41

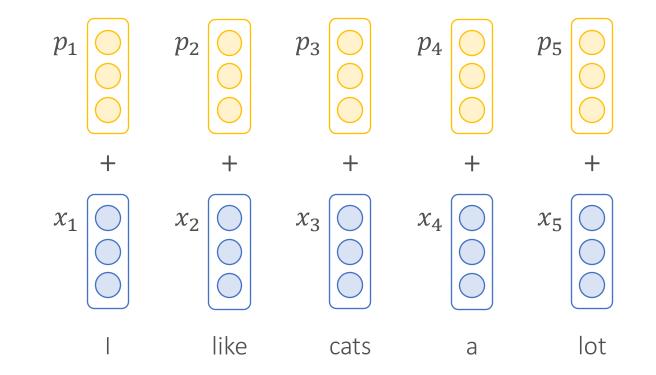
How About Word Order?



42

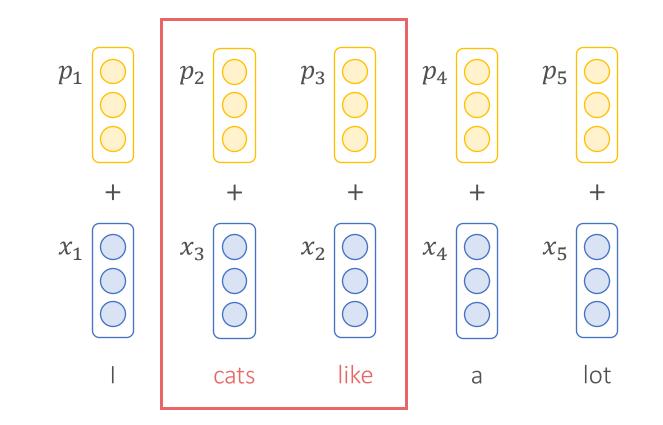
Solution: Positional Encoding

$$x_i \leftarrow x_i + PE_i$$



Solution: Positional Encoding

$$x_i \leftarrow x_i + PE_i$$



Solution: Positional Encoding

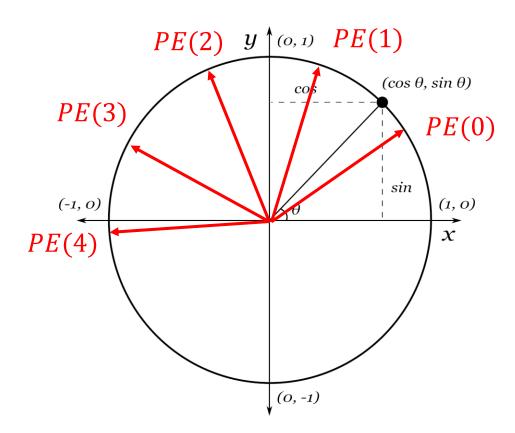
- Unique encoding for each position
- Closer positions should have more similar encodings
- Distance between neighboring positions should be the same

Sinusoidal Positional Encoding

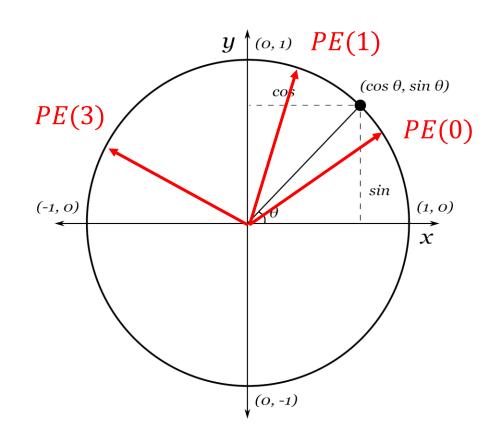
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Why this?

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$



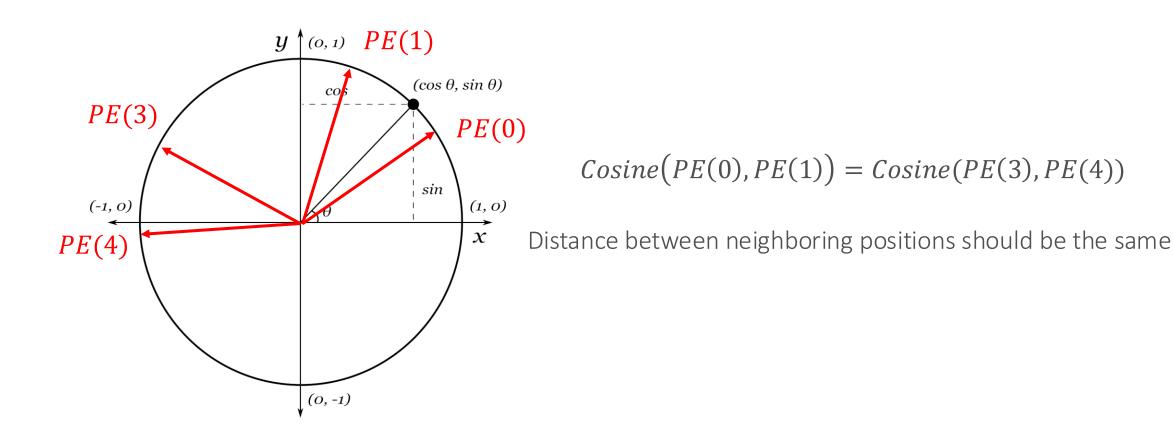
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$



Cosine(PE(0), PE(1)) > Cosine(PE(0), PE(3))

Closer positions should have more similar encodings

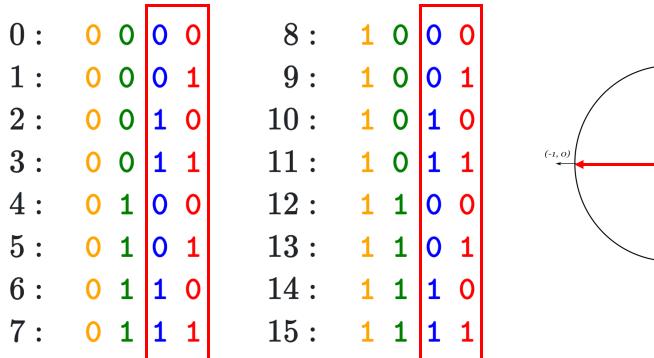
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

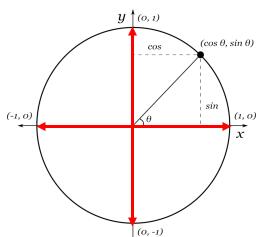


- How to expand to high-dimension?
- Let's consider binary positional encoding first
- How to use 4 bits to represent position 0~15?

0:	0000	8:	1 0 0 0
1:	0001	9:	1001
2:	0 0 1 0	10:	1 0 1 0
3:	0011	11:	1011
4:	0100	12:	1 1 0 0
5:	0101	13:	1 1 0 1
6:	0 1 1 0	14:	1 1 1 0
7:	0111	15:	1 1 1 1

- How to expand to high-dimension?
- Let's consider binary positional encoding first
- How to use 4 bits to represent position 0~15?





- How to expand to high-dimension?
- Let's consider binary positional encoding first
- How to use 4 bits to represent position 0~15?

High frequency rotation

	0:	0	0	0	0	8 :	1 0 0 0
	1:	0	0	0	1	9:	1 0 0 1
Low frequency rotation	2:	0	0	1	0	10:	1 0 1 0
	3:	0	0	1	1	11:	1 0 1 1
	4:	0	1	0	0	12:	1 1 0 0
	5:	0	1	0	1	13:	1 1 0 1
	6:	0	1	1	0	14:	1 1 1 0
	7:	0	1	1	1	15:	1 1 1 1

- How to expand to high-dimension?
- Let's consider binary positional encoding first
- How to use 4 bits to represent position 0~15?

0:	0000	8: 1 0 0 0
1:	0001	9: 1 0 0 1
2:	0 0 1 0	10: 1 0 1 0
3 :	0 0 1 1	11: 1 0 1 1
4:	0 1 0 0	12: 1 1 0 0
5:	0 1 0 1	13: 1 1 0 1
6:	0 1 1 0	14: 1 1 1 0
7:	0 1 1 1	15: 1 1 1 1

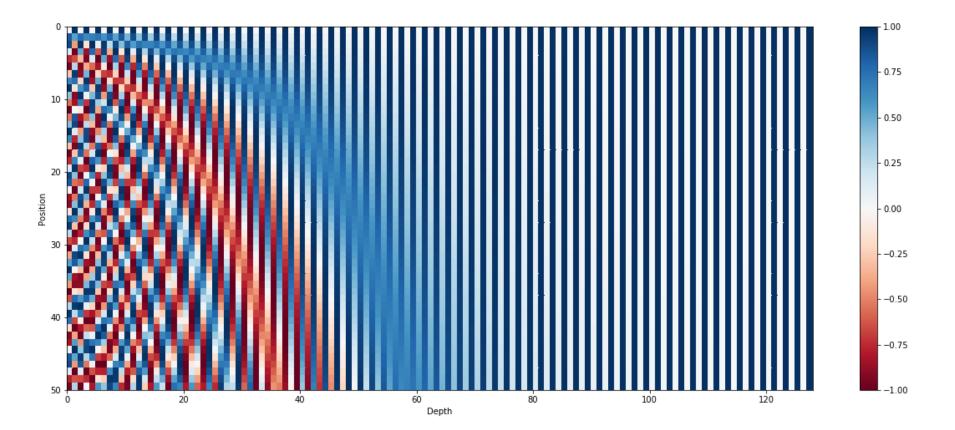
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Soft version of alternating bits

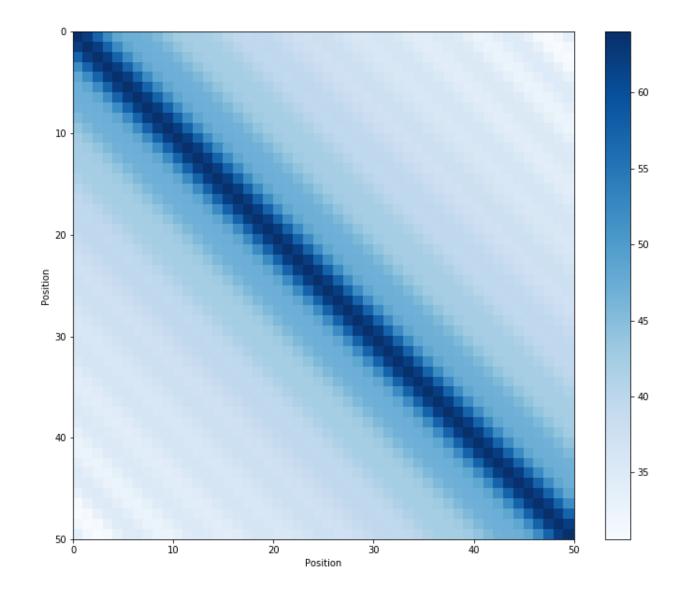
Sinusoidal Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

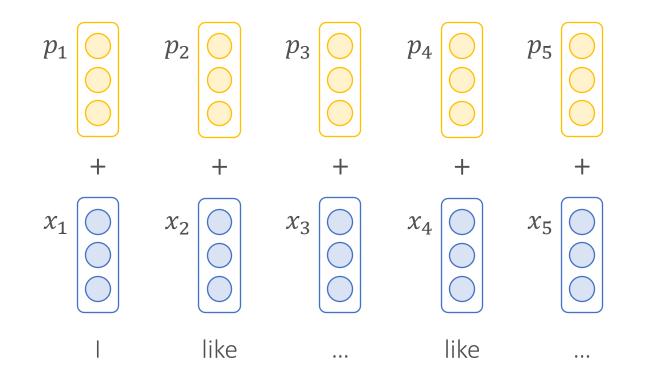
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$



Sinusoidal Positional Encoding



Positional Encoding

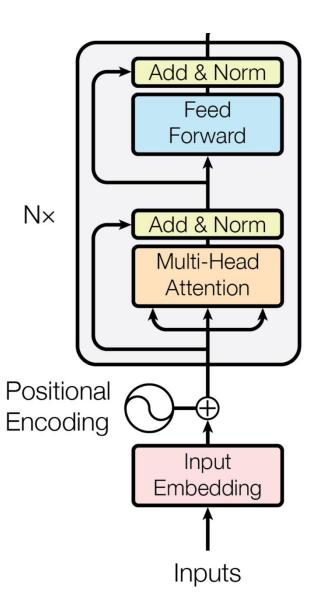


(E(I) + PE(1))(E(like) + PE(2)) = E(I)E(like) + E(I)PE(2) + PE(1)E(like) + PE(1)PE(2)(E(I) + PE(1))(E(like) + PE(4)) = E(I)E(like) + E(I)PE(4) + PE(1)E(like) + PE(1)PE(4)

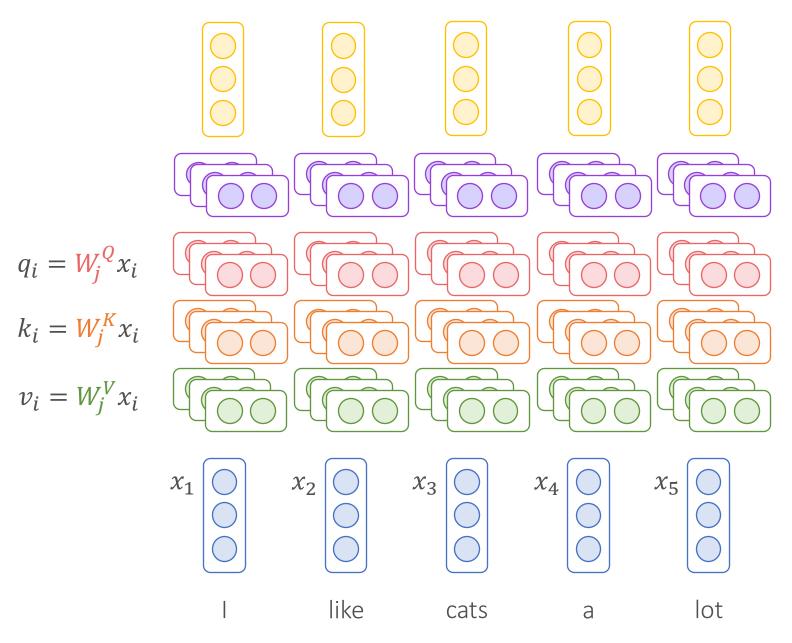
In expectation, they are the same

Position difference

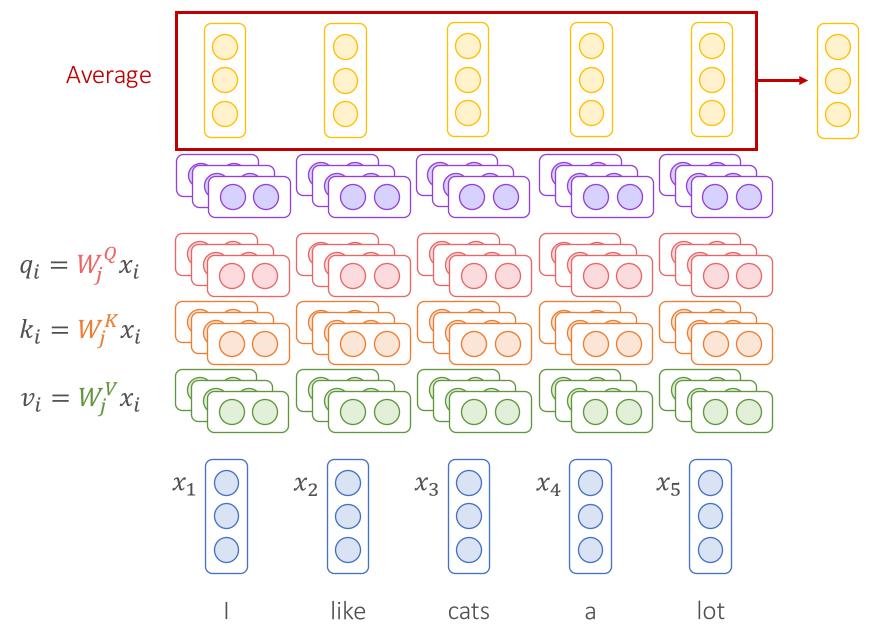
Transformer Encoder with Positional Encoding



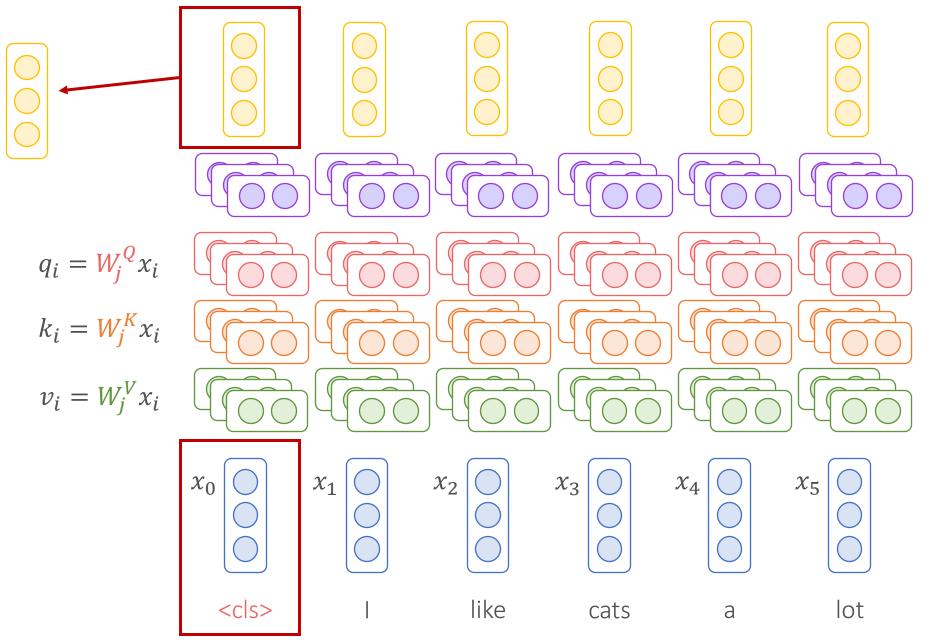
Transformer as Token-Level Encoder



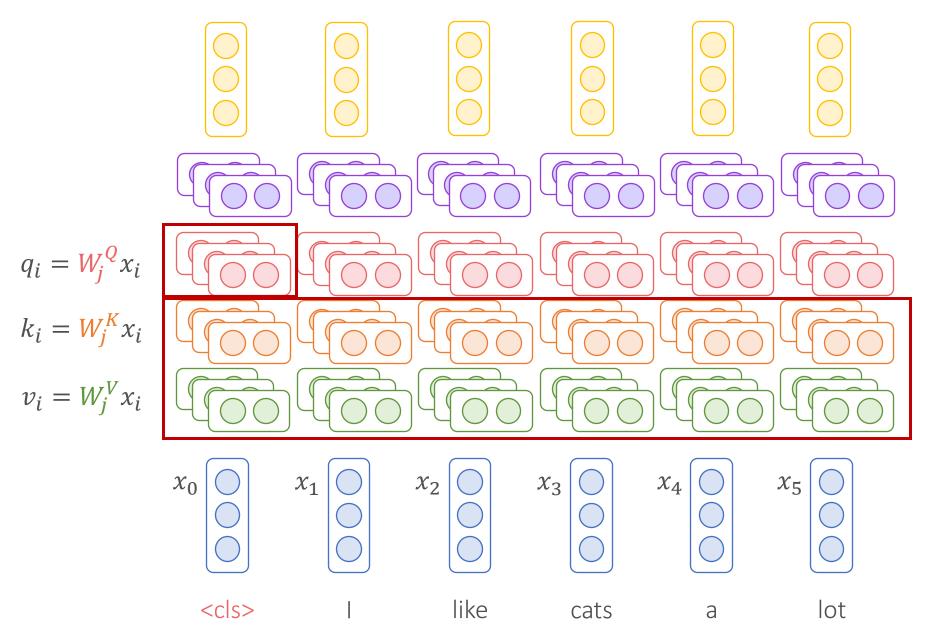
Transformer as Sentence-Level Encoder



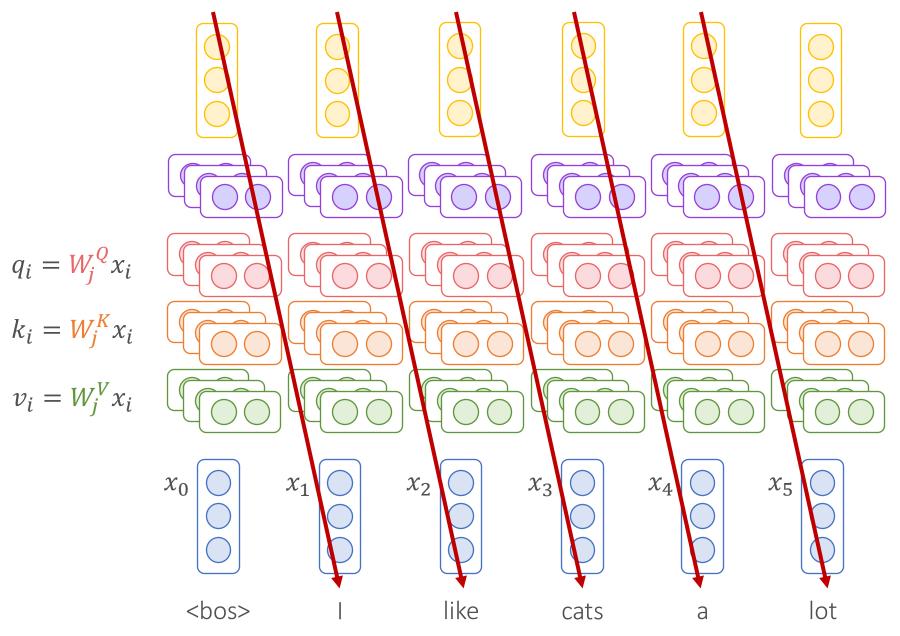
Transformer as Sentence-Level Encoder



Transformer as Sentence-Level Encoder

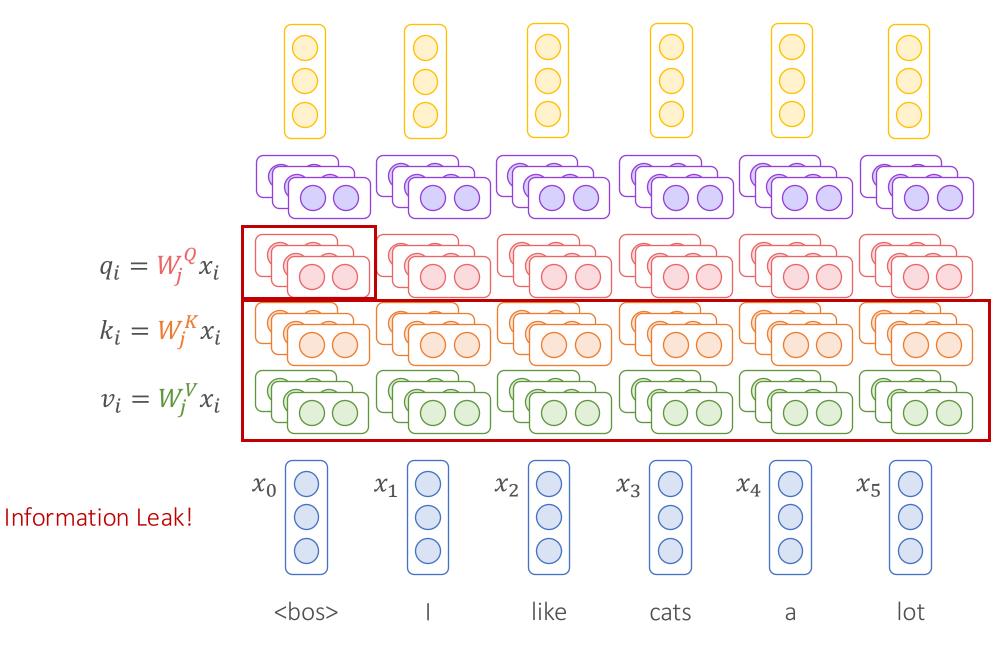


Transformer as Decoder?



62

Transformer as Decoder?



63

Lecture Plan

- Transformers
 - Attention
 - Self-Attention
 - Transformer Encoder
 - Positional Encoding