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Project Sign-Up

• https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylam
XuV7Dtg7cBD2EU/edit?usp=sharing

• 3~4 members per team

• Form teams on your own

• No solo teams (We have too many students!)
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https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylamXuV7Dtg7cBD2EU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylamXuV7Dtg7cBD2EU/edit?usp=sharing


Lecture Plan

• Transformers

• Attention

• Self-Attention

• Transformer Encoder

• Positional Encoding
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• Sequential labeling: A sequence of dependent classification

Recap: RNN as Encoder
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Recap: RNN as Decoder

• RNN Language Modeling

• Generation is a sequence of word classification
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Recap: Encoder vs. Decoder
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• When we need understanding and generation at the same time

Recap: Sequence-to-Sequence Models (Seq2Seq)
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RNN with Attention
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Different Types of Attention
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Dot-Product Attention ℎ𝑖
⊤𝑠𝑗

Multiplicative Attention

Additive Attention

ℎ𝑖
⊤𝑊𝑠𝑗

𝑣⊤ tanh 𝑊1ℎ𝑖 +𝑊2𝑠𝑗



Machine Translation with Attention
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Speech Recognition with Attention
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Listen, Attend and Spell, 2015



Image Captioning with Attention
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Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015



Issues with RNN

• Longer sequences can lead to vanishing gradients → It is hard to capture 
long-distance information

• Lack parallelizability
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Transformers: Attention Is All You Need!

19
Attention Is All You Need, 2017
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Attention – General Version
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From Attention to Self-Attention

• Self-attention = attention from the sequence to itself

• The queries, keys and values come from the same source

• Any word can be a query

• Any word can be a key

• Any word can be a value

24



Self-Attention

25I
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Self-Attention
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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I like cats a lot



Self-Attention

27
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention

32

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑞𝑖 = 𝑊𝑄𝑥𝑖Query

𝑘𝑖 = 𝑊𝐾𝑥𝑖Key

𝑣𝑖 = 𝑊𝑉𝑥𝑖Value

Self-Attention Output

I like cats a lot



Self-Attention – Matrix Form
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http://jalammar.github.io/illustrated-transformer/

Word 1
Word 2

Word 1
Word 2

Word 1
Word 2

Attention 𝑄,𝐾, 𝑉 = softmax
𝑄𝐾⊤

𝑑𝑘
𝑉



Single-Head Attention
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑞𝑖 = 𝑊𝑄𝑥𝑖Query

𝑘𝑖 = 𝑊𝐾𝑥𝑖Key

𝑣𝑖 = 𝑊𝑉𝑥𝑖Value

Self-Attention Output

I like cats a lot



Multi-Head Attention
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖Query
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I like cats a lot

Each attention head focuses on different parts of understanding!



Multi-Head Attention – Matrix Form
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http://jalammar.github.io/illustrated-transformer/

head𝑖 = Attention 𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉

Attention 𝑄,𝐾, 𝑉 = softmax
𝑄𝐾⊤

𝑑𝑘
𝑉

MultiHead 𝑄,𝐾, 𝑉 = Concat head1, … , headℎ 𝑊𝑂



What Does Multi-Head Attention Learn?
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http://jalammar.github.io/illustrated-transformer/



Transformer Layer
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LayerNorm(𝑥 + Sublayer(𝑥))

Residual connection (He et al., 2016)
Layer normalization (Ba et al., 2016)



Transformer Encoder
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…



How About Word Order?

40

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑞𝑖 = 𝑊𝑄𝑥𝑖Query

𝑘𝑖 = 𝑊𝐾𝑥𝑖Key

𝑣𝑖 = 𝑊𝑉𝑥𝑖Value

Self-Attention Output

I like cats a lot



How About Word Order?
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Normalized 
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𝑖

𝛼1,𝑖𝑣𝑖Weighted Sum

I like cats a lot



How About Word Order?
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𝑥1 𝑥3 𝑥2 𝑥4 𝑥5

𝑞𝑖 = 𝑊𝑄𝑥𝑖Query

𝑘𝑖 = 𝑊𝐾𝑥𝑖Key

𝑣𝑖 = 𝑊𝑉𝑥𝑖Value

Normalized 
Attention Scores

𝑧1 =

𝑖

𝛼1,𝑖𝑣𝑖Weighted Sum

I cats like a lot



Solution: Positional Encoding

43

𝑥𝑖 ← 𝑥𝑖 + 𝑃𝐸𝑖

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

I like cats a lot

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

+ + + + +



Solution: Positional Encoding

44

𝑥𝑖 ← 𝑥𝑖 + 𝑃𝐸𝑖

𝑥1 𝑥3 𝑥2 𝑥4 𝑥5

I cats like a lot

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

+ + + + +



Solution: Positional Encoding

• Unique encoding for each position

• Closer positions should have more similar encodings

• Distance between neighboring positions should be the same

45



Sinusoidal Positional Encoding 

46

Why this?



Sinusoidal Positional Encoding: Intuition 

47

𝑃𝐸(0)

𝑃𝐸(1)𝑃𝐸(2)

𝑃𝐸(3)

𝑃𝐸(4)

https://www.inchcalculator.com/unit-circle-calculator/



Sinusoidal Positional Encoding: Intuition 

48

𝑃𝐸(0)

𝑃𝐸(1)

𝑃𝐸(3)

𝐶𝑜𝑠𝑖𝑛𝑒 𝑃𝐸 0 , 𝑃𝐸 1 > 𝐶𝑜𝑠𝑖𝑛𝑒(𝑃𝐸 0 , 𝑃𝐸(3))

Closer positions should have more similar encodings

https://www.inchcalculator.com/unit-circle-calculator/



Sinusoidal Positional Encoding: Intuition 

49

𝑃𝐸(0)

𝑃𝐸(1)

𝑃𝐸(3)

𝑃𝐸(4)

𝐶𝑜𝑠𝑖𝑛𝑒 𝑃𝐸 0 , 𝑃𝐸 1 = 𝐶𝑜𝑠𝑖𝑛𝑒(𝑃𝐸 3 , 𝑃𝐸(4))

Distance between neighboring positions should be the same

https://www.inchcalculator.com/unit-circle-calculator/



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 

50
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 

51
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 

52
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

High frequency rotation

Low frequency rotation



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 

53
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Soft version of alternating bits



Sinusoidal Positional Encoding
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https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Sinusoidal Positional Encoding

55
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Positional Encoding

56

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

I like … like …

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

+ + + + +

𝐸 I + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 2 = 𝐸 I 𝐸 like + 𝐸 I 𝑃𝐸 2 + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 1 𝑃𝐸(2)

𝐸 I + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 4 = 𝐸 I 𝐸 like + 𝐸 I 𝑃𝐸 4 + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 1 𝑃𝐸(4)

In expectation, they are the same Position difference



Transformer Encoder with Positional Encoding
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Transformer as Token-Level Encoder 
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𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

I

𝑥1

like

𝑥2

cats

𝑥3

a

𝑥4

lot

𝑥5



Transformer as Sentence-Level Encoder 
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𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

I

𝑥1

like

𝑥2

cats

𝑥3

a

𝑥4

lot

𝑥5

Average



Transformer as Sentence-Level Encoder 
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𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

<cls>

𝑥0

I

𝑥1

like

𝑥2

cats

𝑥3

a

𝑥4

lot

𝑥5



Transformer as Sentence-Level Encoder 
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𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

<cls>

𝑥0

I

𝑥1

like

𝑥2

cats

𝑥3

a

𝑥4

lot

𝑥5



Transformer as Decoder?
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𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

<bos>

𝑥0

I

𝑥1

like

𝑥2

cats

𝑥3

a

𝑥4

lot

𝑥5



Transformer as Decoder?
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𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

<bos>

𝑥0

I

𝑥1

like

𝑥2

cats

𝑥3

a

𝑥4

lot

𝑥5
Information Leak!



Lecture Plan

• Transformers

• Attention

• Self-Attention

• Transformer Encoder

• Positional Encoding

64
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