CSCE 638 Natural Language Processing Foundation and Techniques

Lecture 8: Transformers

Kuan-Hao Huang

Spring 2025

(Some slides adapted from Chris Manning, Karthik Narasimhan, Danqi Chen, and Vivian Chen)

Lecture Plan

- Transformers
 - Encoder
 - Decoder
 - Encoder-Decoder
- Transformers Variants
 - Longformer
 - Relative Positional Encoding
 - RoFormer

Recap: Attention Is All You Need

Attention Is All You Need, 2017

Recap: Self-Attention

3

Recap: Self-Attention

Recap: Self-Attention

 $z_1 = \sum_i \alpha_{1,i} v_i$ Weighted Sum Normalized \bigcirc \bigcirc Attention Scores $q_i = W^Q x_i$ Query $k_i = W^K x_i$ Key $v_i = W^V x_i$ Value x_2 x_1 x_3 x_5 x_4 (like lot cats а

Recap: Multi-Head Attention

Each attention head focuses on different parts of understanding!

Multi-Attention Output

Query $q_i = W_j^Q x_i$ Key $k_i = W_j^K x_i$ Value $v_i = W_j^V x_i$

Recap: Positional Encoding

 $x_i \leftarrow x_i + PE_i$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

Position

Recap: Transformer Encoder

Transformer

- Non-recurrence: easy to parallelize
- Multi-head attention: capture different aspects by interacting between words
- Positional encoding: capture the order information

Transformer as Token-Level Encoder

10

Transformer as Sentence-Level Encoder

Transformer as Sentence-Level Encoder

Transformer as Sentence-Level Encoder

14

15

Transformer Encoder

Transformer Encoder

Transformer Encoder

- When computing attention for one word
 - Encoder: can see the words before and after this word
 - Decoder: can see the words only before this word

No Masking

Masked Attention: Implementation

\otimes

All-Pair Attention Scores

Causal Masking

Causal Attention Scores

Masked Attention: Implementation

\otimes Causal Masking **Causal Attention Scores** All-Pair Attention Scores Normalize attention weights & Weighted average value vectors

33

How About Encoder-Decoder (Sequence-to-Sequence)?

Decoder

Transformer Encoder-Decoder (Sequence-to-Sequence)

Transformer Encoder-Decoder (Sequence-to-Sequence)

Transformer

Transformer on Machine Translation

	DI			
Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$
GNMT + RL [<u>38</u>]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$
ConvS2S 9	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble 9	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	3.3 •	10^{18}
Transformer (big)	28.4	41.8	2.3 ·	10^{19}

Transformer on Document Generation

Model	Test perplexity	ROUGE-L
A I I I I O O	5 0 40 50	10 5
seq2seq-attention, $L = 500$	5.04952	12.7
Transformer-ED, $L = 500$	2.46645	34.2
Transformer-D, $L = 4000$	2.22216	33.6
Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2
Transformer-DMCA, MoE-128, $L = 11000$	1.92871	37.9
Transformer-DMCA, MoE-256, $L = 7500$	1.90325	38.8

A General Framework for Text Classification

- Teach the model how to make prediction *y*
- Logistic regression, neural networks, CNN, RNN, LSTM, Transformers

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$

Lecture Plan

- Transformers
 - Encoder
 - Decoder
 - Encoder-Decoder
- Transformers Variants
 - Longformer
 - Relative Positional Encoding
 - RoFormer

Computation in Transformer

- All-pair attention scores
 - Complexity $O(length^2)$
- When the input is long \rightarrow slow

LongFormer

- Don't compute all-pair attention score
 - Manipulate attention mask
- Capture local information to reduce computational load
 - Idea is similar to convolutional neural network

Transformer Encoder

No Masking

Sliding Window Attention Masking

Different Types of Attention Masks

(a) Full n^2 attention

(b) Sliding window attention

(c) Dilated sliding window

(d) Global+sliding window

LongFormer Results on Language Modeling

Model	#Param	Dev	Test
Dataset text8			
T12 (Al-Rfou et al., 2018)	44M	-	1.18
Adaptive (Sukhbaatar et al., 2019)	38M	1.05	1.11
BP-Transformer (Ye et al., 2019)	39M	-	1.11
Our Longformer	41M	1.04	1.10
Dataset enwik8			
T12 (Al-Rfou et al., 2018)	44M	-	1.11
Transformer-XL (Dai et al., 2019)	41M	-	1.06
Reformer (Kitaev et al., 2020)	-	-	1.05
Adaptive (Sukhbaatar et al., 2019)	39M	1.04	1.02
BP-Transformer (Ye et al., 2019)	38M	-	1.02
Our Longformer	41M	1.02	1.00

Lecture Plan

- Transformers
 - Encoder
 - Decoder
 - Encoder-Decoder
- Transformers Variants
 - Longformer
 - Relative Positional Encoding
 - RoFormer

Absolute Positional Encoding

 $x_i \leftarrow x_i + PE_i$

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

Absolute Position

Relative Position

Why Relative Position?

- More contextual awareness
 - Position -4: 4 position before this word
 - Position +3: 4 position after this word
- Generalization to longer sequences

Relative Position

i

J $r_{i,j}$ +1 +2 +3 +5 +6 +7 +8 +9 0 +4 0 +2 +3 +4 +5 +6 +7 +8 +1 -1 -1 +1 +3 +5 -2 0 +2 +4 +6 +7 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 -3 -2 -1 0 +1 +2 +3 +5 -4 +4 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 -5 -3 -2 -1 0 +1 +2 +3 -6 -4 -5 -2 0 +2 -7 -6 -4 -3 -1 +1 -7 -5 -3 -2 -6 -1 0 +1 -8 -4 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Relative Position with Clipping

 $r_{i,j}$ +3 +5 +6 +6 +6 +1 +2 +4 +6 0 +2 +3 +5 +6 +6 i 0 +1 +4 +6 -1 +5 -1 +1 +2 +3 +4 +6 +6 -2 0 Limited relative -3 -2 -1 0 +1 +2 +3 +4 +5 +6 positions -3 -2 -1 +2 +3 +5 0 +1 +4 -4 -3 -2 0 +2 +3 +4 -5 -4 -1 +1 -5 -3 -2 -1 0 +1 +2 +3 -6 -4 +2 -6 -6 -5 -4 -3 -2 -1 0 +1 -5 -3 -2 +1 -6 -6 -6 -4 -1 0 -6 -6 -6 -6 -5 -3 -2 -1 0 -4

Map Relative Positions to Embeddings

Self-Attention

Self-Attention

Self-Attention with Relative Position Embeddings

Self-Attention with Relative Position Embeddings

70

Relative Positions for Machine Translation

Model	Position Information	EN-DE BLEU	EN-FR BLEU
Transformer (base)	Absolute Position Representations	26.5	38.2
Transformer (base)	Relative Position Representations	26.8	38.7
Transformer (big)	Absolute Position Representations	27.9	41.2
Transformer (big)	Relative Position Representations	29.2	41.5
Lecture Plan

- Transformers
 - Encoder
 - Decoder
 - Encoder-Decoder
- Transformers Variants
 - Longformer
 - Relative Positional Encoding
 - RoFormer

RoFormer

- Improved version of relative positional encoding
 - Rotary Position Embedding (RoPE)
- Most advanced large language models use RoPE

Self-Attention with Relative Position Embeddings

Self-Attention with RoPE (In 2D Case)

Self-Attention with RoPE (In 2D Case)

General Form of RoPE

$$\boldsymbol{q}_m^{\mathsf{T}} \boldsymbol{k}_n = (\boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_q \boldsymbol{x}_m)^{\mathsf{T}} (\boldsymbol{R}_{\Theta,n}^d \boldsymbol{W}_k \boldsymbol{x}_n) = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{W}_q R_{\Theta,n-m}^d \boldsymbol{W}_k \boldsymbol{x}_n$$

Similar to the idea of using different flipping frequency for Sinusoidal positional encoding

RoPE Similarity over Position Difference

RoPE Implementation

RoPE Performance

Model	MRPC	SST-2	QNLI	STS-B	QQP	MNLI(m/mm)
BERT Devlin et al. [2019]	88.9	93.5	90.5	85.8	71.2	84.6/83.4
RoFormer	89.5	90.7	88.0	87.0	86.4	80.2/79.8

Lecture Plan

- Transformers
 - Encoder
 - Decoder
 - Encoder-Decoder
- Transformers Variants
 - Longformer
 - Relative Positional Encoding
 - RoFormer