CSCE 638 Natural Language Processing Foundation and Techniques

Lecture 9: Contextualized Representations and Pre-Training

Kuan-Hao Huang Spring 2025

Quiz 1

- Date: 2/17
 - 10 minutes before the end of the lecture
 - 5 questions focusing on high-level concepts

Week	Date		Торіс	
W1	1/13	L1	Course Overview [slides]	
	1/15	L2	Text Classification [slides]	
W2	1/20		Martin Luther King, Jr. Day (No Class)	
	1/22	L3	Word Representations [slides]	
W3	1/27	L4	Word Representations, Tokenization, Language Modeling [slides]	
	1/29	L5	Convolutional Neural Network, Recurrent Neural Network [slides]	
W4	2/3	L6	Sequential Labeling, Sequence-to-Sequence, Attention	
	2/5	L7	Transformers	

Assignment 1

- Due: 2/17 11:59pm
- Small modification
 - Problem 5.7

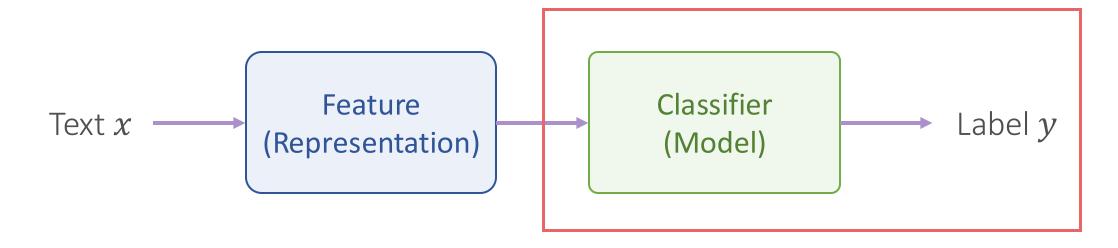
```
epochs = 100
best_valid_acc = 0.0
for epoch in range(epochs):
   model.train()
   total_loss = 0
   for texts, labels in loader_train:
       ### ====== TODO : START ====== ###
       ### ====== TODO : END ====== ###
       valid_acc = evaluate_acc(model, loader_valid)
       if valid_acc > best_valid_acc:
           best_valid_acc = valid_acc
           torch.save(model.state_dict(), model_path)
   print(f"Epoch [{epoch+1}/{epochs}], Loss: {total_loss / len(loader_train)}, Valid Acc: {valid_acc}")
```



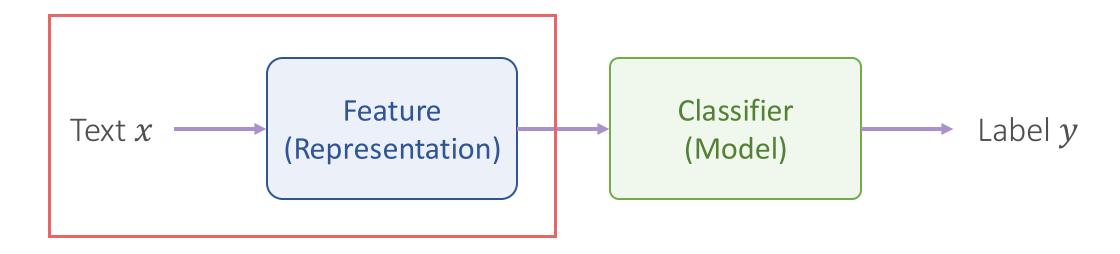
```
epochs = 100
best_valid_acc = 0.0
for epoch in range(epochs):
    model.train()
   total_loss = 0
    for texts, labels in loader_train:
        ### ====== TODO : START ====== ###
        ### ====== TODO : END ====== ###
    valid_acc = evaluate_acc(model, loader_valid)
    if valid_acc > best_valid_acc:
       best_valid_acc = valid_acc
       torch.save(model.state_dict(), model_path)
    print(f"Epoch [{epoch+1}/{epochs}], Loss: {total_loss / len(loader_train)}, Valid Acc: {valid_acc}")
```

Lecture Plan

- Contextualized Representations
 - ELMo
- Pre-Training
 - Encoder-Only Pre-Training
 - Encoder-Decoder Pre-Training
 - Decoder-Only Pre-Training
- Model Distillation

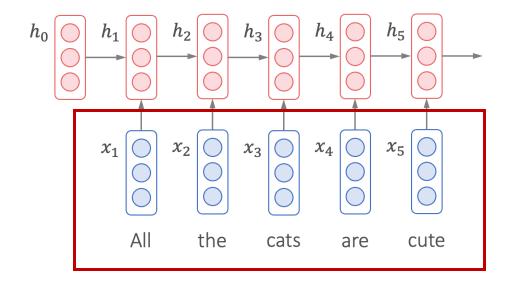


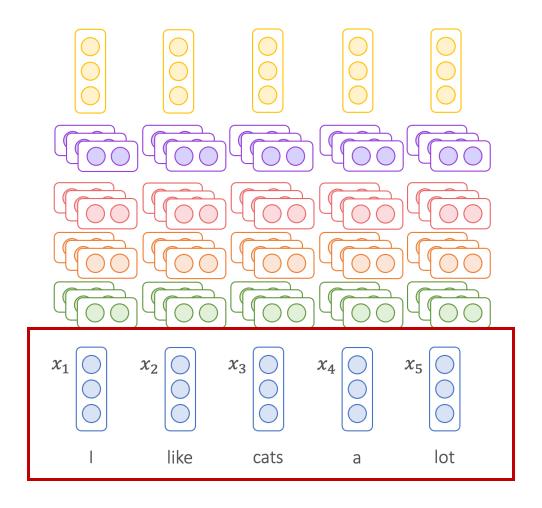
- Teach the model how to make prediction y
- Logistic regression, neural networks, CNN, RNN, LSTM, Transformers



- Teach the model how to understand example x
- Rule-based representations
 - Bag-of-words, n-grams
- Learnable representations
 - Word2Vec (Skip-Gram and CBOW), GloVe, FastText

Static Word Embeddings





Static Word Embeddings

- One vector for each word type
- How about words with multiple meanings?

```
mouse<sup>1</sup>: .... a mouse controlling a computer system in 1968.

mouse<sup>2</sup>: .... a quiet animal like a mouse

bank<sup>1</sup>: ...a bank can hold the investments in a custodial account ...

bank<sup>2</sup>: ...as agriculture burgeons on the east bank, the river ...
```

Contextualized Word Embeddings

The embeddings of a word should be conditioned on its context

Distributional hypothesis: words that occur in similar contexts tend to have similar meanings

J.R.Firth 1957

- "You shall know a word by the company it keeps"
- One of the most successful ideas of modern statistical NLP!

...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...

Contextualized Word Embeddings

- Chico Ruiz made a spectacular play on Alusik's grounder ...
- Olivia De Havilland signed to do a Broadway play for Garson ...
- Kieffer was commended for his ability to hit in the clutch, as well as his allround excellent play ...
- ... they were actors who had been handed fat roles in a successful play ...
- Concepts play an important role in all aspects of cognition ...

ELMo: Embeddings from Language Models

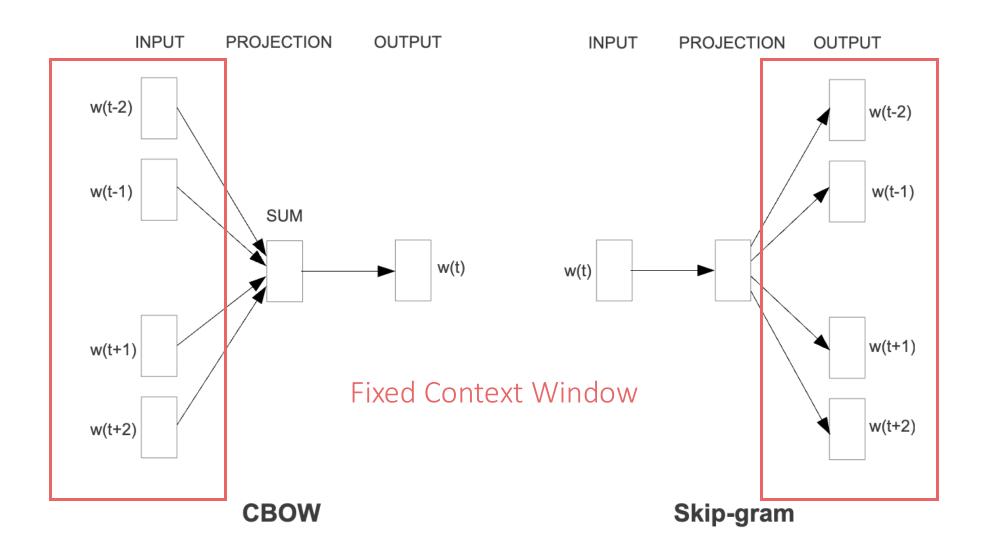
Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

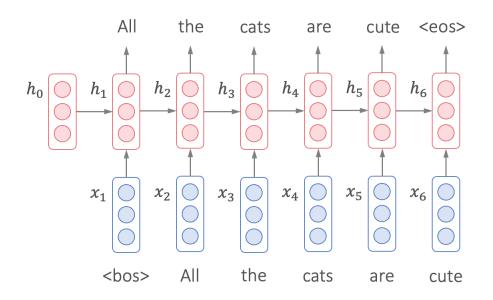
Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

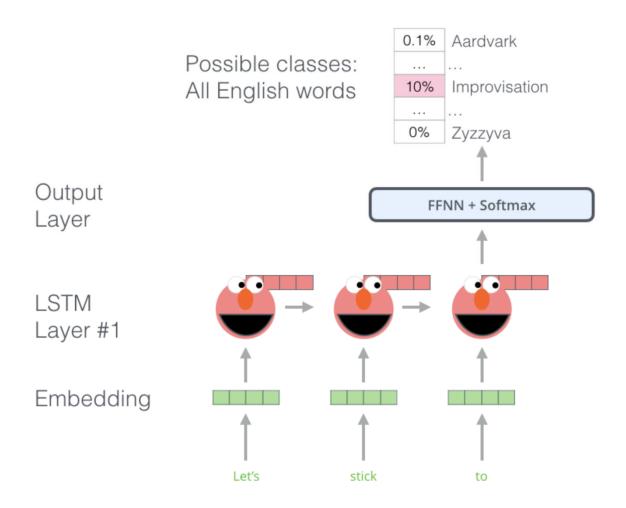
[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Recap: Continuous Bag of Words (CBOW) and Skip-Grams

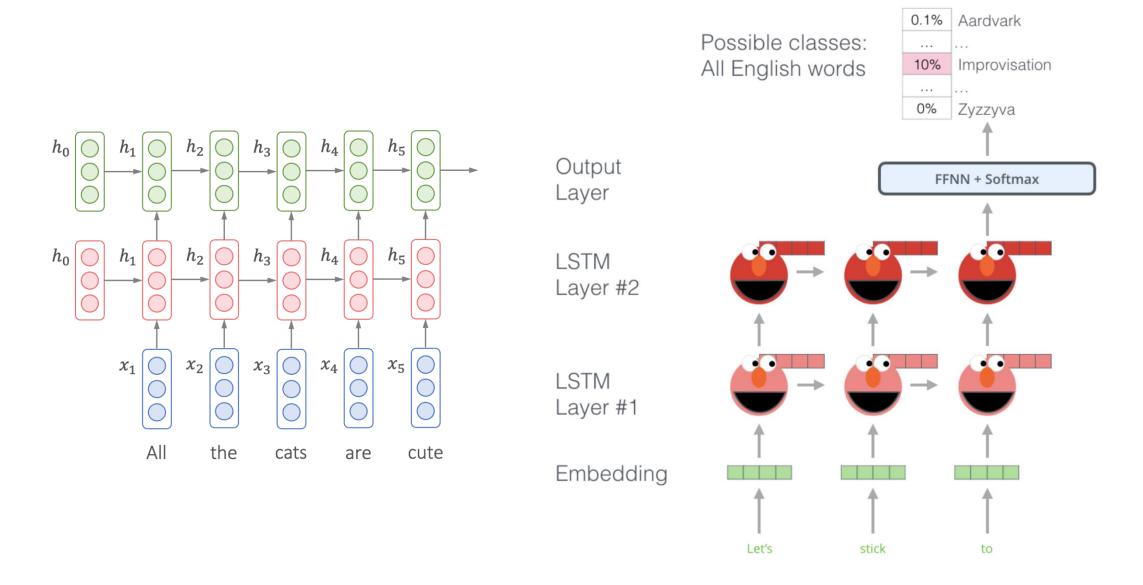


ELMo: Language Modeling

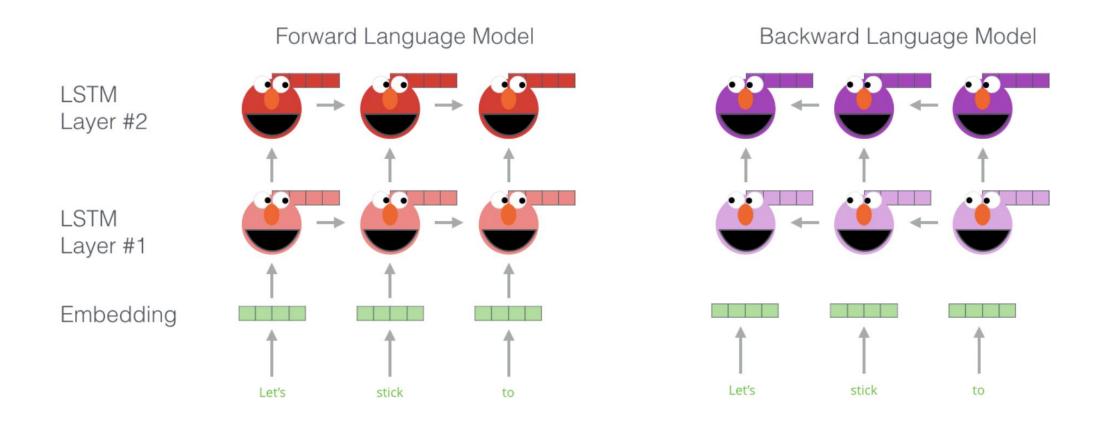




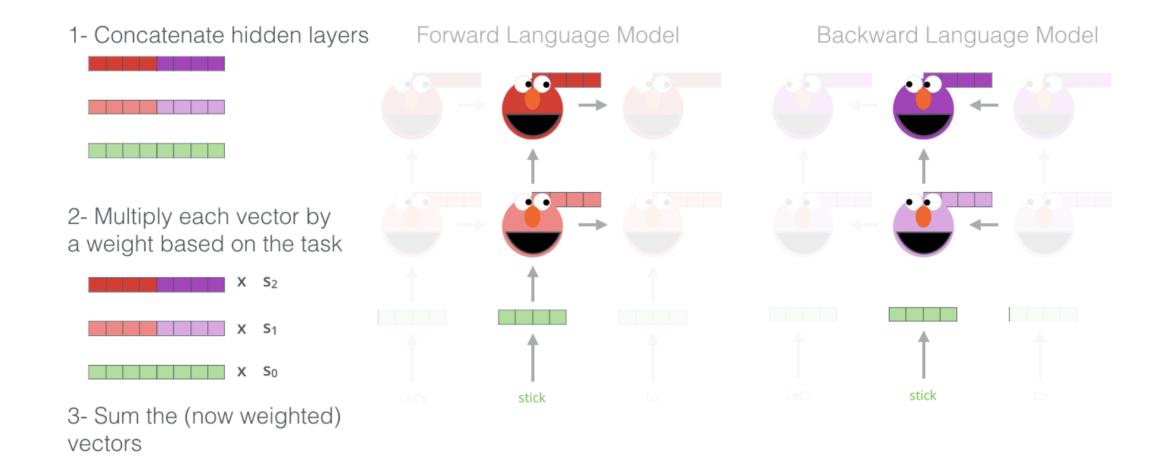
ELMo: Language Modeling with Stacked LSTM



ELMo: Bi-Directional Language Modeling



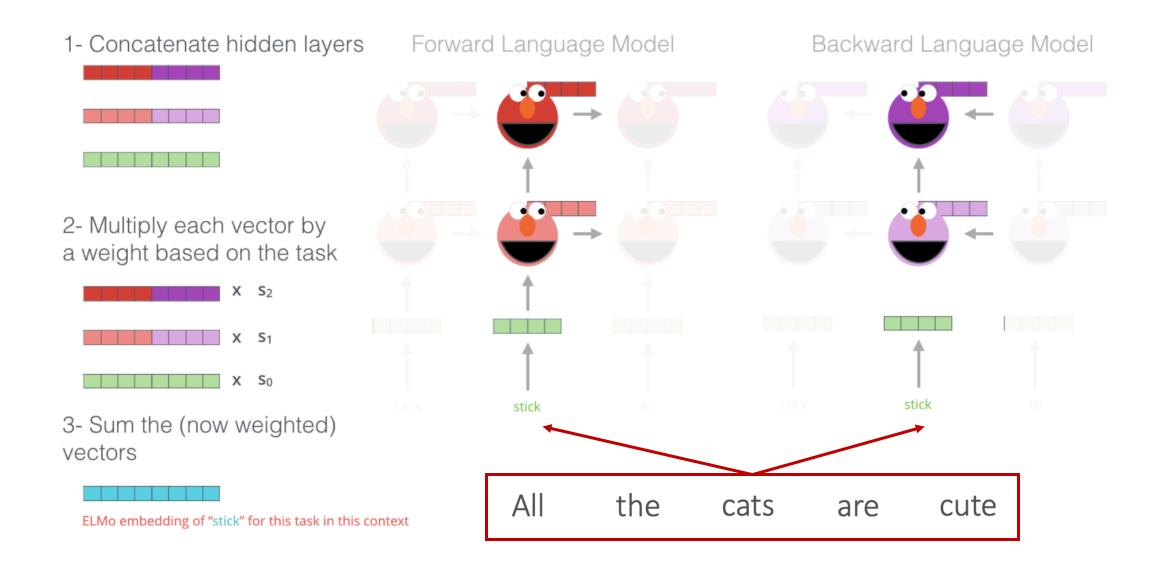
ELMo: Contextualized Word Embeddings



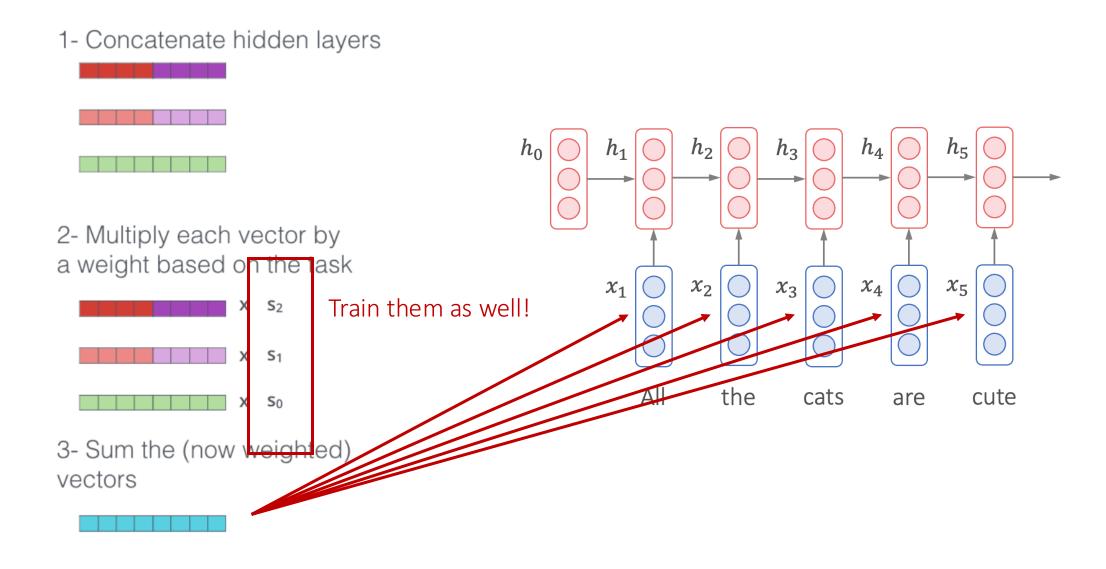
15

ELMo embedding of "stick" for this task in this context

How to Use ELMo?



How to Use ELMo?



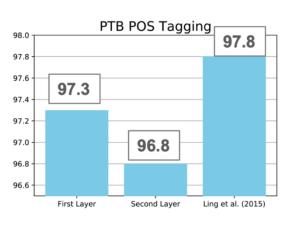
17

Task-Specific Weights

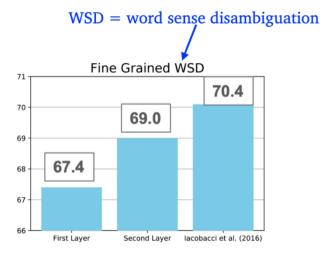
1- Concatenate hidden layers

2- Multiply each vector by a weight based on the task

3- Sum the (now weighted) vectors



first layer > second layer



second layer > first layer

Nearest Neighbor in Embedding Space

	Source	Nearest Neighbors		
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer		
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended		
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round		
	grounder $\{\dots\}$	excellent play.		
	Olivia De Havilland	{} they were actors who had been handed fat roles in		
	signed to do a Broadway	a successful play, and had talent enough to fill the roles		
	$\underline{\text{play}}$ for Garson $\{\dots\}$	competently, with nice understatement.		

ELMo Performance

TASK	PREVIOUS SOTA	OUR BASELINE	ELMO + BASELINE	
SQuAD	Liu et al. (2017)	84.4	81.1	85.8
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17
SRL	He et al. (2017)	81.7	81.4	84.6
Coref	Lee et al. (2017)	67.2	67.2	70.4
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5

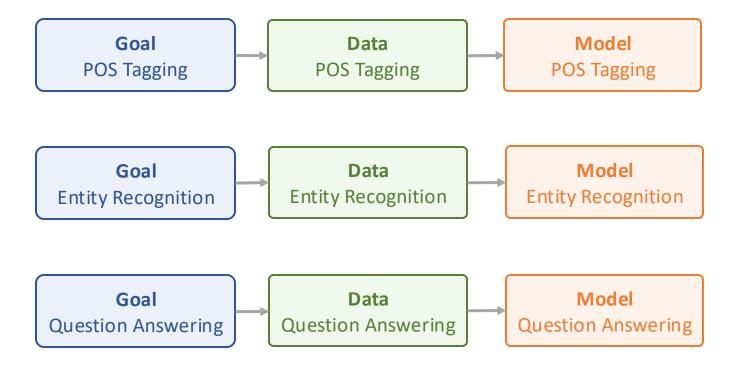
Lecture Plan

- Contextualized Representations
 - ELMo
- Pre-Training
 - Encoder-Only Pre-Training
 - Encoder-Decoder Pre-Training
 - Decoder-Only Pre-Training
- Model Distillation

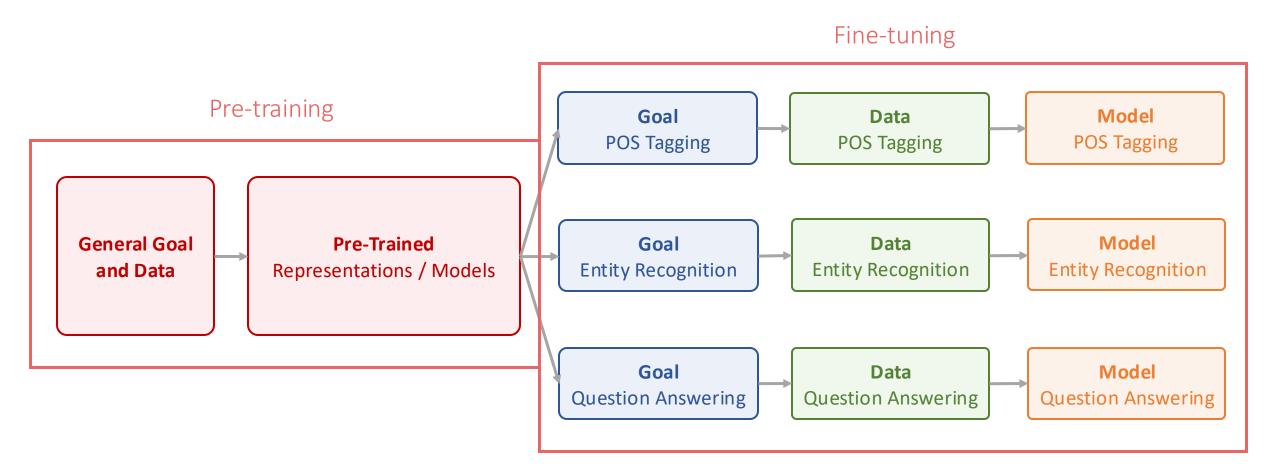
Pre-Training

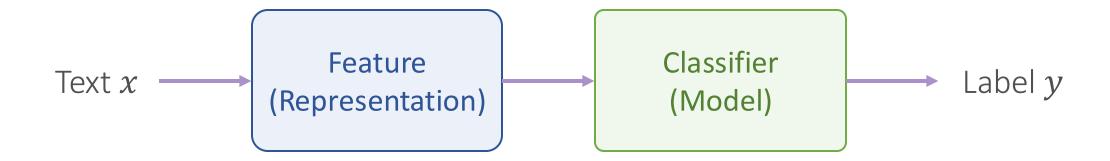
- Pre-training and fine-tuning
 - First, pre-train a model on a large dataset for task X
 - Them, fine-tune the same on a dataset for task Y
- If task X is somewhat related to task Y
 - Good performance on task X → It is helpful for task Y
- The objective of task X is typically self-supervised
- Word2Vec and ELMo are one kind of pre-training
 - Task X: Predicting context words / Language modeling
 - Task Y: Any downstream tasks

Training from Scratch

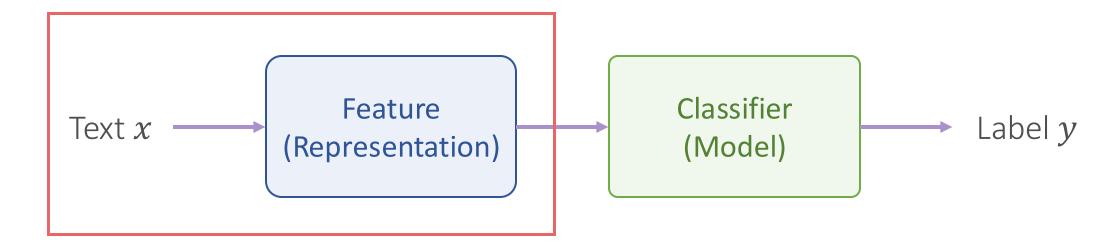


Fine-Tuning with Pre-Training

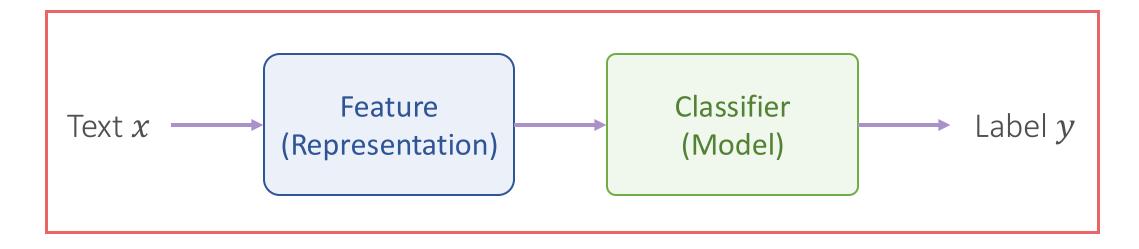




- Task-specific feature: N-gram features, TF-IDF
- Task-specific classifier: Logistic Regression, CNN, RNN, Transformers
- No pre-training

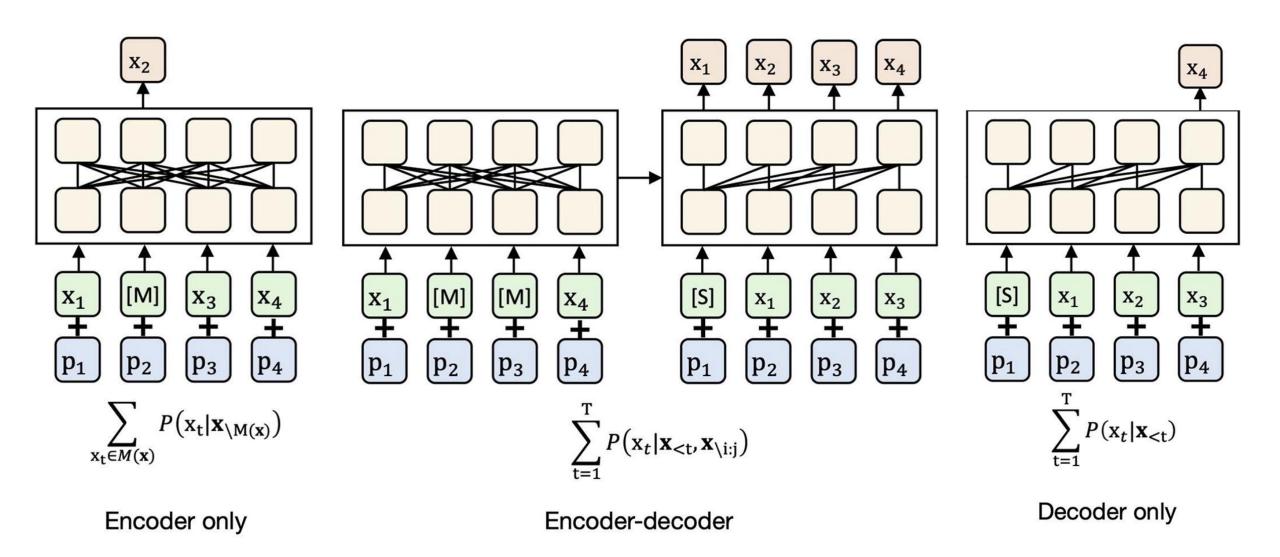


- Pre-trained feature: Word2Vec, Glove, ELMo
- Task-specific classifier: Logistic Regression, CNN, RNN, Transformers
- Pre-training on features/representations only



- Pre-training the whole pipeline
 - Pre-trained representations + pre-trained model weights
 - We only cover Transformer-based pre-training

Types of Pre-Training



Encoder-Only: BERT

• Bidirectional Encoder Representations from Transformers (BERT)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

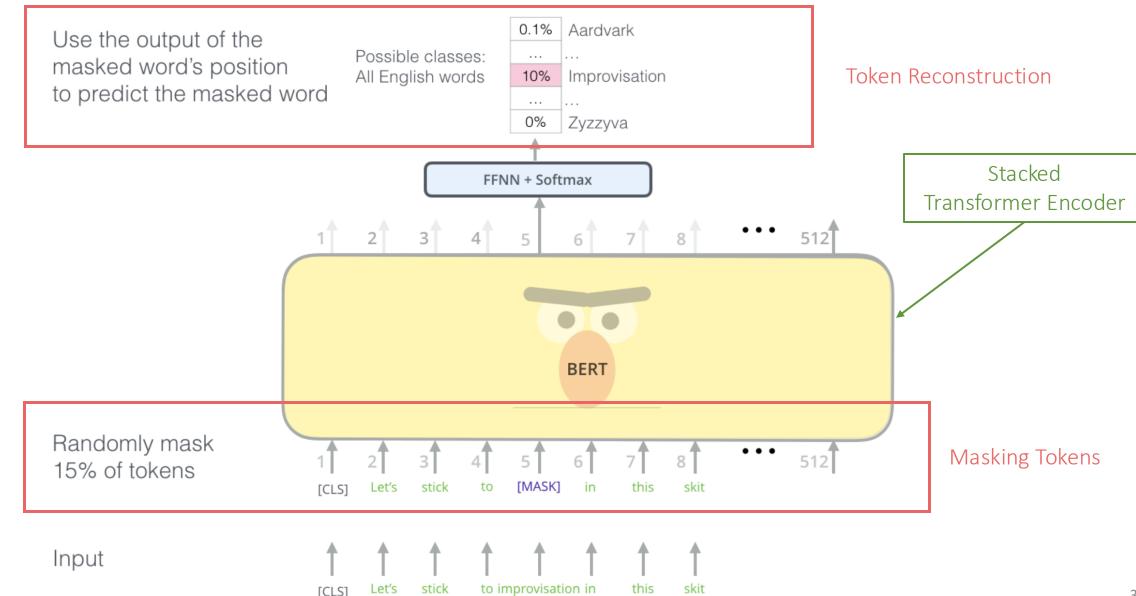
Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Encoder-Only: BERT

- Transformer architecture
- Encoder-only
 - More about representations
 - Bi-directional
- Pre-training corpus
 - Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)
- Two self-supervised objectives
 - Masked language modeling
 - Next sentence prediction

Pre-Training Task: Masked Language Modeling



Pre-Training Task: Masked Language Modeling

- Why is it useful?
 - Learn to aggregate information from context

Distributional hypothesis: words that occur in similar contexts tend to have similar meanings

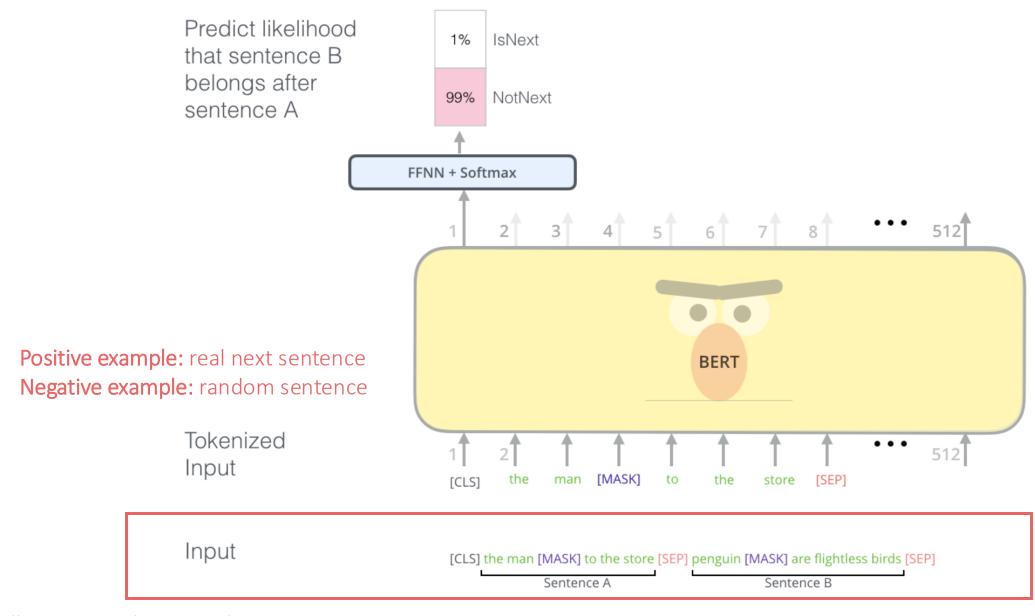
J.R.Firth 1957

- "You shall know a word by the company it keeps"
- · One of the most successful ideas of modern statistical NLP!

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

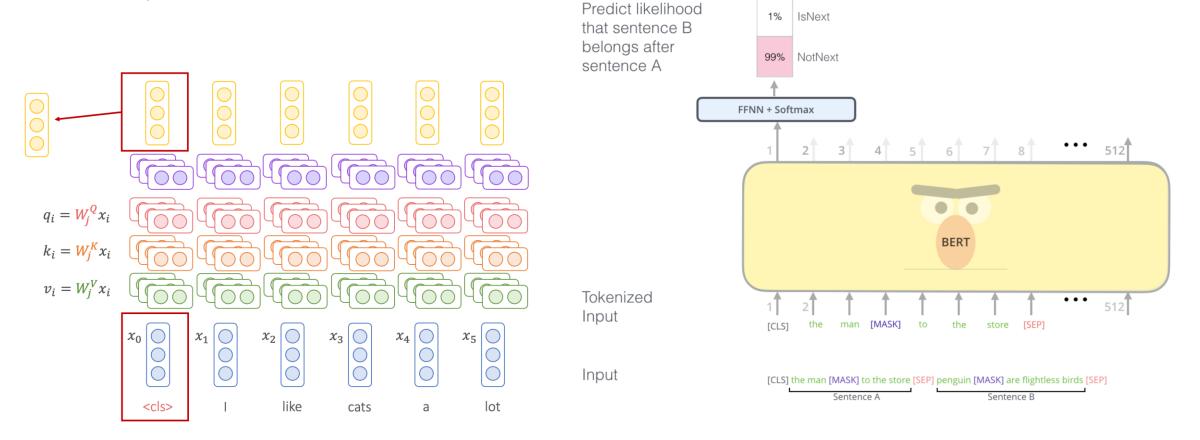
0.1% Aardvark Use the output of the Possible classes: masked word's position All English words 10% Improvisation to predict the masked word 0% Zyzzyva FFNN + Softmax 2 Randomly mask 15% of tokens stick to [MASK] Input

Pre-Training Task: Next Sentence Prediction



Pre-Training Task: Next Sentence Prediction

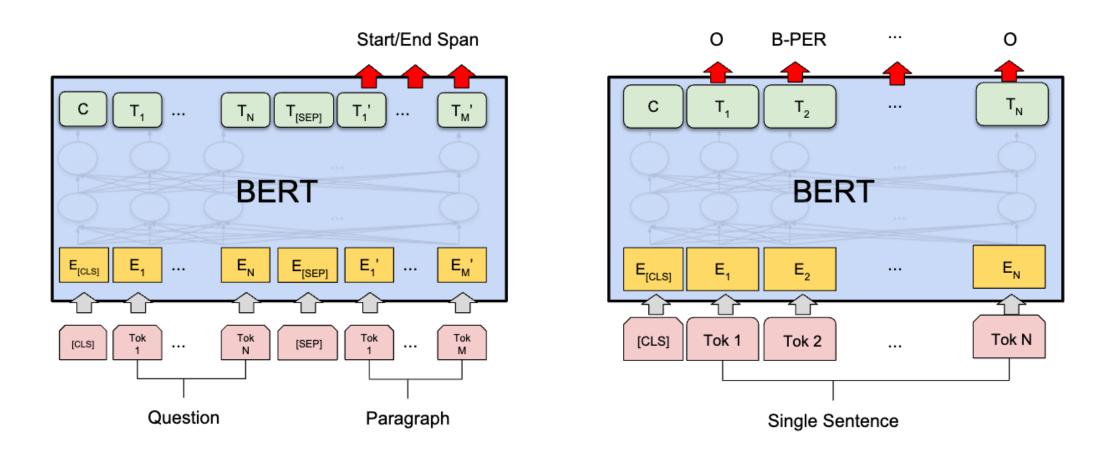
Why do we need this?



Do we really need this (?)

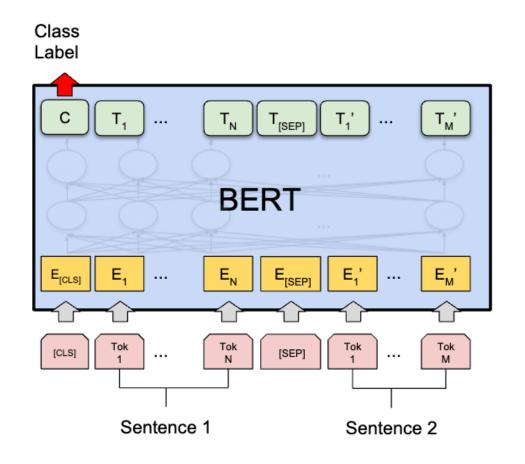
Fine-Tuning: Token-Level Tasks

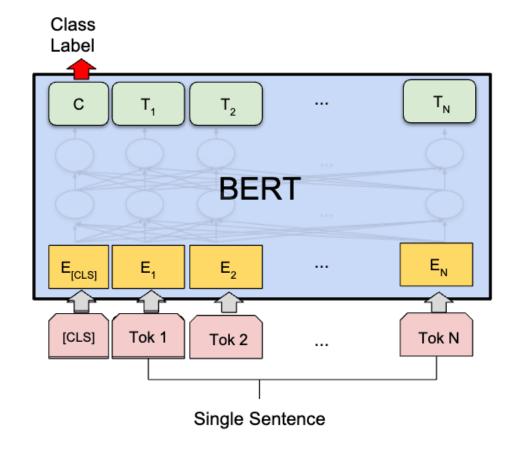
• Pre-training provides a good weight initialization



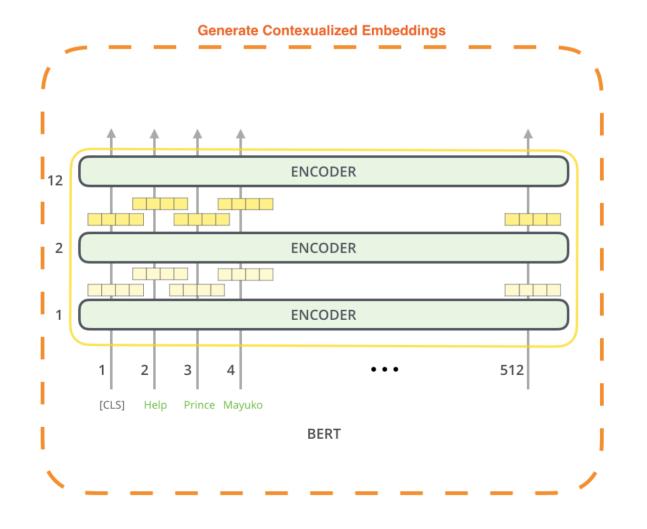
Fine-Tuning: Sentence-Level Tasks

Pre-training provides a good weight initialization

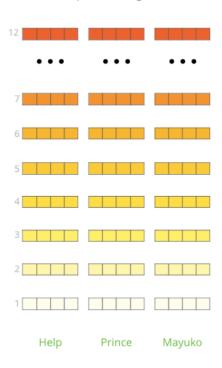




BERT as General Contextualized Representations



The output of each encoder layer along each token's path can be used as a feature representing that token.



But which one should we use?

Use BERT

- BERT-base
 - 12 layers, hidden size = 768, 12 attention heads
 - # parameters ≈ 110M
- BERT-large
 - 24 layers, hidden size = 1024, 16 attention heads
 - # parameters ≈ 340M
- Cased vs. Uncased

Amazing Performance

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Encoder-Only: SpanBERT

SpanBERT: Improving Pre-training by Representing and Predicting Spans

```
Mandar Joshi*† Danqi Chen*^{\sharp \S} Yinhan Liu^{\S} Daniel S. Weld^{\dagger \epsilon} Luke Zettlemoyer^{\dagger \S} Omer Levy^{\S}
```

† Allen School of Computer Science & Engineering, University of Washington, Seattle, WA {mandar 90, weld, lsz}@cs.washington.edu

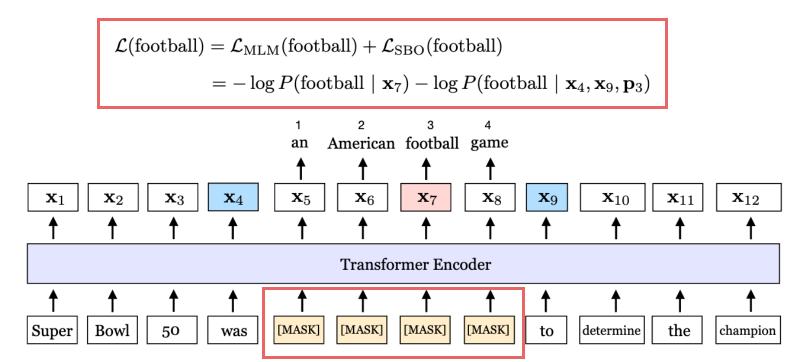
† Computer Science Department, Princeton University, Princeton, NJ dangic@cs.princeton.edu

^eAllen Institute of Artificial Intelligence, Seattle

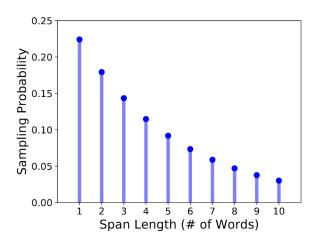
{danw}@allenai.org

§ Facebook AI Research, Seattle {danqi, yinhanliu, lsz, omerlevy}@fb.com

Encoder-Only: SpanBERT



- Span masking
- Single sentence training
- Span boundary objective (SBO)



Better Performance Than BERT

	NewsQA	TriviaQA	SearchQA	HotpotQA	Natural Questions	Avg.
Google BERT	68.8	77.5	81.7	78.3	79.9	77.3
Our BERT	71.0	79.0	81.8	80.5	80.5	78.6
Our BERT-1seq	71.9	80.4	84.0	80.3	81.8	79.7
SpanBERT	73.6	83.6	84.8	83.0	82.5	81.5

Use SpanBERT

- SpanBERT-base
 - 12 layers, hidden size = 768, 12 attention heads
 - # parameters ≈ 110M
- SpanBERT-large
 - 24 layers, hidden size = 1024, 16 attention heads
 - # parameters ≈ 340M
- Cased vs. Uncased

Encoder-Only: RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach

```
Yinhan Liu* Myle Ott* Naman Goyal* Jingfei Du* Mandar Joshi Danqi Chen Omer Levy Mike Lewis Luke Zettlemoyer Veselin Stoyanov
```

```
† Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA
{mandar90,lsz}@cs.washington.edu

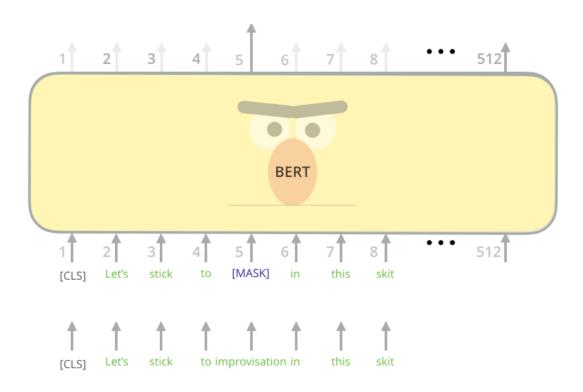
§ Facebook AI
{yinhanliu,myleott,naman,jingfeidu,danqi,omerlevy,mikelewis,lsz,ves}@fb.com
```

Encoder-Only: RoBERTa

- Robustly optimized BERT approach (RoBERTa)
- BERT is still under-trained
- Improve the robustness of training BERT

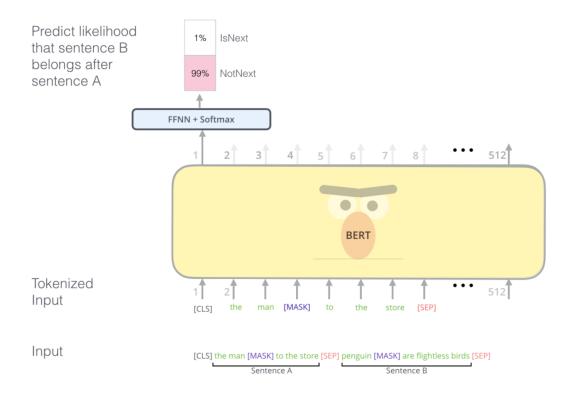
Static Masking vs. Dynamic Masking

- Static masking: decide masked words during data pre-processing
- Dynamic masking: decide masked words right before feeding into models



Masking	SQuAD 2.0	MNLI-m	SST-2	
static	78.3	84.3	92.5	
dynamic	78.7	84.0	92.9	

Removing Next Sentence Prediction Task



Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE
Our reimplementation	on (with NSP loss):	•		
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0
Our reimplementation	on (without NSP lo	ss):		
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6

True Byte-Pair Encoding (BPE)

- BERT: BPE with unicode characters
 - Vocabulary size: 30K
- RoBERTa: BPE with bytes
 - Vocabulary size: 50K

Training Details

- Trained longer
- 10x data
- Bigger batch sizes

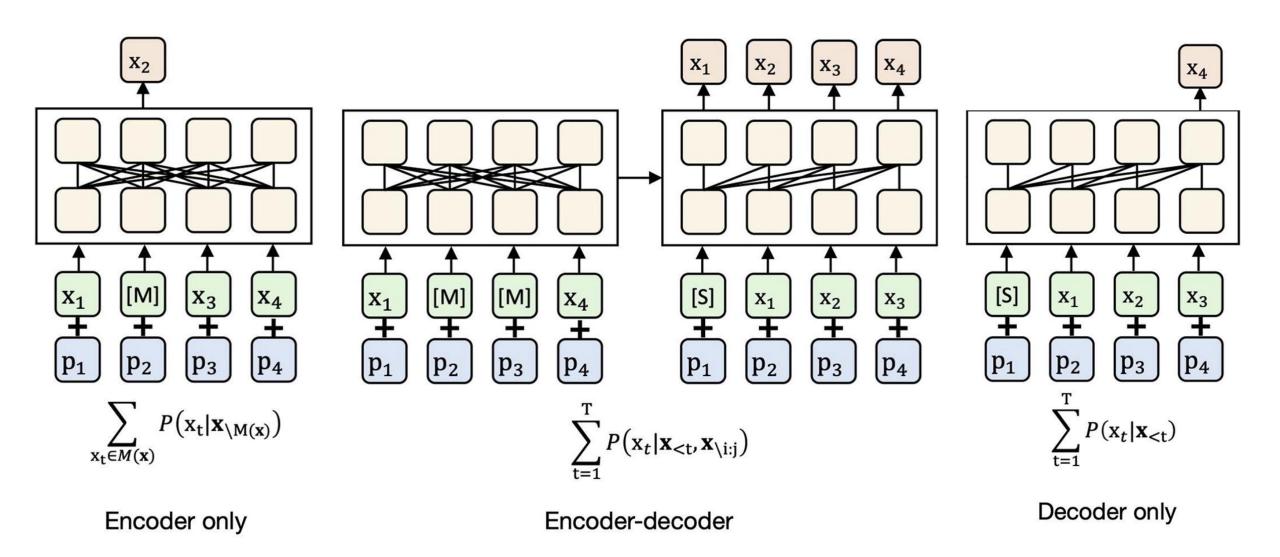
Much Better Performance Than BERT

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7

Use RoBERTa

- RoBERTa-base
 - 12 layers, hidden size = 768, 12 attention heads
 - # parameters ≈ 110M
- RoBERTa-large
 - 24 layers, hidden size = 1024, 16 attention heads
 - # parameters ≈ 340M

Types of Pre-Training



Encoder-Decoder: BART

Bidirectional and Auto-Regressive Transformers (BART)

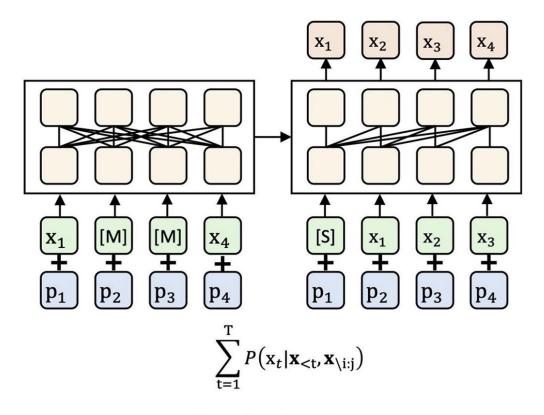
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

Mike Lewis*, Yinhan Liu*, Naman Goyal*, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer Facebook AI

{mikelewis, yinhanliu, naman}@fb.com

Encoder-Decoder: BART

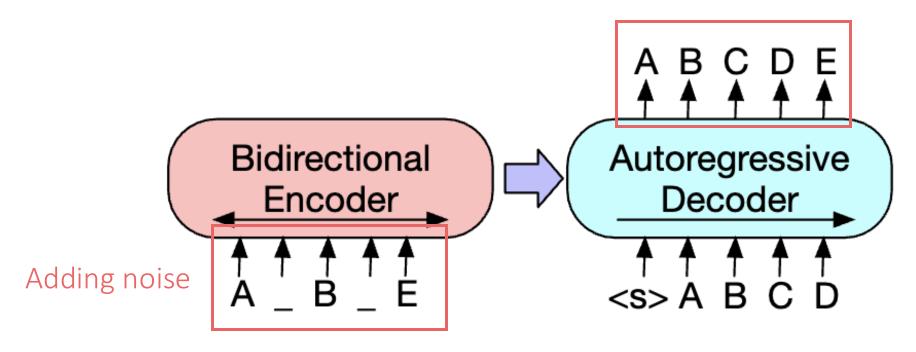
- Transformer Encoder-Decoder
- Pre-training for generation tasks but can be also used for representations



Encoder-decoder

Denoising Autoencoder

Generate original input

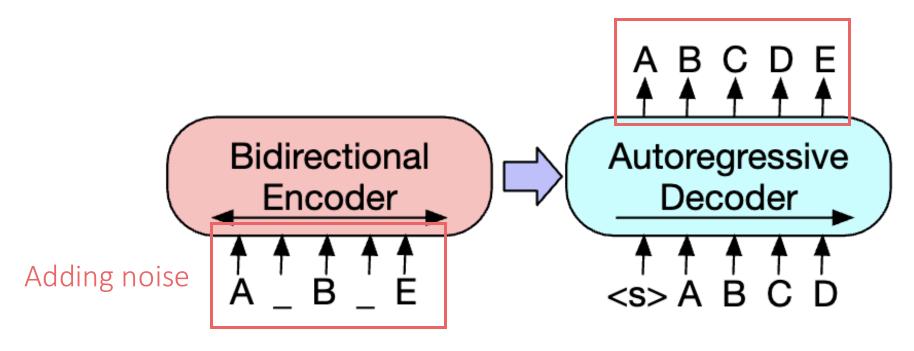


Denoising Objective

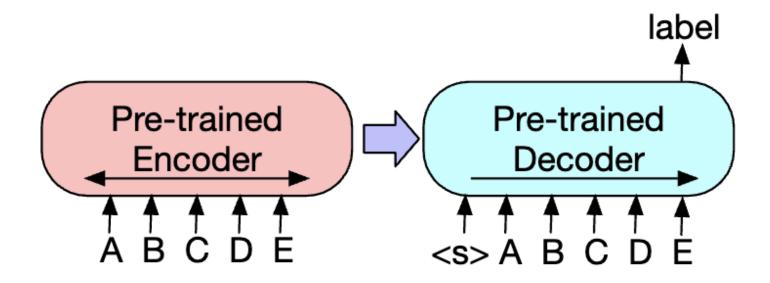
- Token Masking
 - A<mask>CD<mask>F. → ABCDEF.
- Token Deletion
 - ACDF. → ABCDEF.
- Text Infilling
 - A<mask>D<mask>F. → ABCDEF.
- Sentence Permutation
 - FG. ABC. DE. → ABC. DE. FG.
- Document Rotation
 - E. FG. ABC. D → ABC. DE. FG.

Denoising Autoencoder

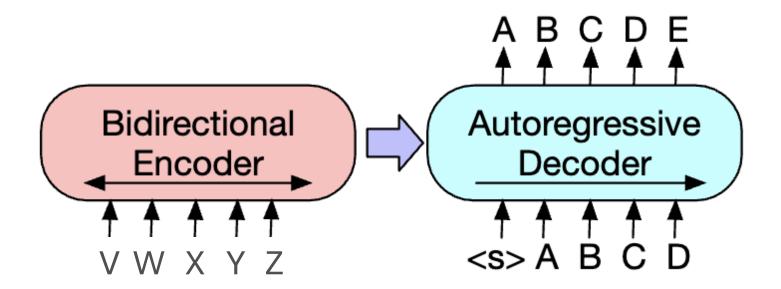
Generate original input



Fine-Tuning: Sentence-Level Tasks



Fine-Tuning: Sequence-to-Sequence



Comparable Performance on Classification Tasks

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

Better Performance on Generation Tasks

Summarization

	CNN/DailyMail				XSum			
	R1	R2	RL	R1	R2	RL		
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95		
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24		
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72		
UniLM	43.33	20.21	40.51	-	-	-		
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15		
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27		
BART	44.16	21.28	40.90	45.14	22.27	37.25		

Question Answering

	ELI5					
	R 1	R2	RL			
Best Extractive	23.5	3.1	17.5			
Language Model	27.8	4.7	23.1			
Seq2Seq	28.3	5.1	22.8			
Seq2Seq Multitask	28.9	5.4	23.1			
BART	30.6	6.2	24.3			

Translation

RO-EN
36.80
36.29
37.96

Use BART

- BART-base
 - 6 layers for both encoder and decoder, hidden size = 768, 12 attention heads
 - # parameters ≈ 139M
- BART-large
 - 12 layers for both encoder and decoder, hidden size = 1024, 16 attention heads
 - # parameters ≈ 406M