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Quiz 1

• Date: 2/17

• 10 minutes before the end of the lecture

• 5 questions focusing on high-level concepts
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Assignment 1

• Due: 2/17 11:59pm 

• Small modification

• Problem 5.7
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Lecture Plan

• Contextualized Representations

• ELMo

• Pre-Training

• Encoder-Only Pre-Training

• Encoder-Decoder Pre-Training

• Decoder-Only Pre-Training

• Model Distillation
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Feature
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Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification
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• Teach the model how to make prediction 𝑦

• Logistic regression, neural networks, CNN, RNN, LSTM, Transformers
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A General Framework for Text Classification
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• Teach the model how to understand example 𝑥

• Rule-based representations

• Bag-of-words, n-grams

• Learnable representations

• Word2Vec (Skip-Gram and CBOW), GloVe, FastText



Static Word Embeddings
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Static Word Embeddings

• One vector for each word type

• How about words with multiple meanings?
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Contextualized Word Embeddings

• The embeddings of a word should be conditioned on its context
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Contextualized Word Embeddings
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• Chico Ruiz made a spectacular play on Alusik’s grounder …

• Olivia De Havilland signed to do a Broadway play for Garson …

• Kieffer was commended for his ability to hit in the clutch , as well as his all-
round excellent play …

• … they were actors who had been handed fat roles in a successful play …

• Concepts play an important role in all aspects of cognition …



ELMo: Embeddings from Language Models
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Deep contextualized word representations, 2018



Recap: Continuous Bag of Words (CBOW) and Skip-Grams
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Fixed Context Window



ELMo: Language Modeling
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http://jalammar.github.io/illustrated-bert



ELMo: Language Modeling with Stacked LSTM
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http://jalammar.github.io/illustrated-bert



ELMo: Bi-Directional Language Modeling
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http://jalammar.github.io/illustrated-bert



ELMo: Contextualized Word Embeddings

15
http://jalammar.github.io/illustrated-bert



How to Use ELMo?
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http://jalammar.github.io/illustrated-bert



How to Use ELMo?
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Train them as well!

http://jalammar.github.io/illustrated-bert



Task-Specific Weights
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http://jalammar.github.io/illustrated-bert



Nearest Neighbor in Embedding Space
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ELMo Performance
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Lecture Plan

• Contextualized Representations

• ELMo

• Pre-Training

• Encoder-Only Pre-Training

• Encoder-Decoder Pre-Training

• Decoder-Only Pre-Training

• Model Distillation
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Pre-Training

• Pre-training and fine-tuning

• First, pre-train a model on a large dataset for task X 

• Them, fine-tune the same on a dataset for task Y

• If task X is somewhat related to task Y

• Good performance on task X → It is helpful for task Y

• The objective of task X is typically self-supervised

• Word2Vec and ELMo are one kind of pre-training

• Task X: Predicting context words / Language modeling

• Task Y: Any downstream tasks
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Goal 
POS Tagging

Data
POS Tagging

Model
POS Tagging

Goal 
Entity Recognition

Data 
Entity Recognition

Model
Entity Recognition

Goal 
Question Answering

Data 
Question Answering

Model
Question Answering

Training from Scratch
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Fine-Tuning with Pre-Training

Goal 
POS Tagging

Data
POS Tagging

Model
POS Tagging

Goal 
Entity Recognition

Data 
Entity Recognition

Model
Entity Recognition

Goal 
Question Answering

Data 
Question Answering

Model
Question Answering

Pre-Trained 
Representations / Models

General Goal 
and Data

Pre-training

Fine-tuning
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Text 𝑥
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A General Framework for Text Classification
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• Task-specific feature: N-gram features, TF-IDF 

• Task-specific classifier: Logistic Regression, CNN, RNN, Transformers

• No pre-training
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(Model)
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A General Framework for Text Classification
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• Pre-trained feature: Word2Vec, Glove, ELMo

• Task-specific classifier: Logistic Regression, CNN, RNN, Transformers

• Pre-training on features/representations only



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification
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• Pre-training the whole pipeline

• Pre-trained representations + pre-trained model weights

• We only cover Transformer-based pre-training
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Types of Pre-Training

https://www.sciencedirect.com/science/article/pii/S2095809922006324



Encoder-Only: BERT

• Bidirectional Encoder Representations from Transformers (BERT)
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018



Encoder-Only: BERT

• Transformer architecture

• Encoder-only

• More about representations

• Bi-directional

• Pre-training corpus

• Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)

• Two self-supervised objectives

• Masked language modeling

• Next sentence prediction
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018



Pre-Training Task: Masked Language Modeling
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http://jalammar.github.io/illustrated-bert/

Stacked 
Transformer Encoder

Masking Tokens

Token Reconstruction



Pre-Training Task: Masked Language Modeling

• Why is it useful?

• Learn to aggregate 
information from context

32



Pre-Training Task: Next Sentence Prediction
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http://jalammar.github.io/illustrated-bert/

Positive example: real next sentence 
Negative example: random sentence



Pre-Training Task: Next Sentence Prediction

• Why do we need this?
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Do we really need this (?)



Fine-Tuning: Token-Level Tasks
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• Pre-training provides a good weight initialization



Fine-Tuning: Sentence-Level Tasks
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• Pre-training provides a good weight initialization



BERT as General Contextualized Representations
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https://medium.com/towards-data-science/breaking-bert-down-430461f60efb



Use BERT

• BERT-base

• 12 layers, hidden size = 768, 12 attention heads

• # parameters ≈ 110M

• BERT-large

• 24 layers, hidden size = 1024, 16 attention heads

• # parameters ≈ 340M

• Cased vs. Uncased
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Amazing Performance
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Encoder-Only: SpanBERT
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SpanBERT: Improving Pre-training by Representing and Predicting Spans, 2020



Encoder-Only: SpanBERT

• Span masking

• Single sentence training

• Span boundary objective (SBO)
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Better Performance Than BERT
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Use SpanBERT

• SpanBERT-base

• 12 layers, hidden size = 768, 12 attention heads

• # parameters ≈ 110M

• SpanBERT-large

• 24 layers, hidden size = 1024, 16 attention heads

• # parameters ≈ 340M

• Cased vs. Uncased
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Encoder-Only: RoBERTa

44
RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019



Encoder-Only: RoBERTa

• Robustly optimized BERT approach (RoBERTa)

• BERT is still under-trained

• Improve the robustness of training BERT
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Static Masking vs. Dynamic Masking
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• Static masking: decide masked words during data pre-processing

• Dynamic masking: decide masked words right before feeding into models



Removing Next Sentence Prediction Task
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True Byte-Pair Encoding (BPE)

• BERT: BPE with unicode characters

• Vocabulary size: 30K

• RoBERTa: BPE with bytes

• Vocabulary size: 50K
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Training Details

• Trained longer 

• 10x data

• Bigger batch sizes
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Much Better Performance Than BERT
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Use RoBERTa

• RoBERTa-base

• 12 layers, hidden size = 768, 12 attention heads

• # parameters ≈ 110M

• RoBERTa-large

• 24 layers, hidden size = 1024, 16 attention heads

• # parameters ≈ 340M
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Types of Pre-Training

https://www.sciencedirect.com/science/article/pii/S2095809922006324



Encoder-Decoder: BART

• Bidirectional and Auto-Regressive Transformers (BART)
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BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, 2020



Encoder-Decoder: BART

• Transformer Encoder-Decoder

• Pre-training for generation tasks but can be also used for representations
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Denoising Autoencoder
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Adding noise

Generate original input



Denoising Objective

• Token Masking

• A<mask>CD<mask>F. → ABCDEF.

• Token Deletion

• ACDF. → ABCDEF.

• Text Infilling

• A<mask>D<mask>F. → ABCDEF.

• Sentence Permutation

• FG. ABC. DE. → ABC. DE. FG.

• Document Rotation

• E. FG. ABC. D → ABC. DE. FG.
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Denoising Autoencoder
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Adding noise

Generate original input



Fine-Tuning: Sentence-Level Tasks
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Fine-Tuning: Sequence-to-Sequence

59

V  W   X   Y   Z



Comparable Performance on Classification Tasks
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Better Performance on Generation Tasks

61

Summarization

Question Answering
Translation



Use BART

• BART-base

• 6 layers for both encoder and decoder, hidden size = 768, 12 attention heads

• # parameters ≈ 139M

• BART-large

• 12 layers for both encoder and decoder, hidden size = 1024, 16 attention heads

• # parameters ≈ 406M
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