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SIGIR 2025 LiveRAG Challenge

• https://sigir2025.dei.unipd.it/live-rag-challenge.html

• RAG: Retrieval Augmented Generation

• Advance RAG research and compare the performance of their solutions 
with other teams on a fixed corpus
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https://sigir2025.dei.unipd.it/live-rag-challenge.html


SIGIR 2025 LiveRAG Challenge
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Lecture Plan

• Pre-Training

• Encoder-Only Pre-Training

• Encoder-Decoder Pre-Training

• Decoder-Only Pre-Training

• Model Distillation
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Recap: Fine-Tuning with Pre-Training

Goal 
POS Tagging

Data
POS Tagging

Model
POS Tagging

Goal 
Entity Recognition

Data 
Entity Recognition

Model
Entity Recognition

Goal 
Question Answering

Data 
Question Answering

Model
Question Answering

Pre-Trained 
Representations / Models

General Goal 
and Data

Pre-training

Fine-tuning
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Recap: Types of Pre-Training

https://www.sciencedirect.com/science/article/pii/S2095809922006324



Recap: BERT – Masked Language Modeling
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http://jalammar.github.io/illustrated-bert/

Stacked 
Transformer Encoder



Recap: BERT – Next Sentence Prediction
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http://jalammar.github.io/illustrated-bert/

Positive example: real next sentence 
Negative example: random sentence



Recap: Other Encoder-Only Pre-Trained Models

• RoBERTa

• SpanBERT
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Recap: Types of Pre-Training

https://www.sciencedirect.com/science/article/pii/S2095809922006324



Recap: BART – Denoising Objective

• Token Masking

• A<mask>CD<mask>F. → ABCDEF.

• Token Deletion

• ACDF. → ABCDEF.

• Text Infilling

• A<mask>D<mask>F. → ABCDEF.

• Sentence Permutation

• FG. ABC. DE. → ABC. DE. FG.

• Document Rotation

• E. FG. ABC. D → ABC. DE. FG.
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Encoder-Decoder: T5

• Text-to-Text Transfer Transformer (T5)
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Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020



Motivation: BART
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Different ways when considering classification and seq2seq generation



Convert Everything to Text-to-Text Tasks
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Masked Span Reconstruction (Seq2Seq Version)
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Multi-Task Learning

15

• Convert everything to text-to-text tasks

• Jointly fine-tune them together



Multi-Task Learning
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Multi-Task Learning

17



Multi-Task Learning
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Relative Position
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0 1 2 3 4 5 6 7 8 9 10 11

Position -4 Position +3

0 1 2 3 4 5 6 7 8 9 10 11

Position -5 Position +2



Fine-Tuning: Text-to-Text For Everything
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Promising Results

21



Use T5

• T5-small: 

• # parameters ≈ 60M

• T5-base: 

• # parameters ≈ 220M

• T5-large: 

• # parameters ≈ 770M

• T5-3B: # 

• parameters ≈ 3B

• T5-11B: 

• # parameters ≈ 11B
22
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Types of Pre-Training

https://www.sciencedirect.com/science/article/pii/S2095809922006324



Decoder-Only: GPT

• Improving Language Understanding by Generative Pre-Training, OpenAI 
2018

• Generative Pre-trained Transformer (GPT)

• Language Models are Unsupervised Multitask Learners, OpenAI 2019

• GPT-2

• Language Models are Few-Shot Learners, OpenAI 2020

• GPT-3
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Language Modeling
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• Next word prediction

• Trained with large corpus



Comparison: Masked Language Models
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Comparison: Causal Language Models
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GPT-3: From Fine-Tuning to Few-Shot Learning

• Even larger training data, even larger model size
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GPT-3: From Fine-Tuning to Few-Shot Learning

• Solve entirely new tasks by few-shot learning (in-context learning)
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Large Language Models
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Types of Pre-Training

https://www.sciencedirect.com/science/article/pii/S2095809922006324



Use GPT

• GPT-2-small

• # parameters ≈ 117M

• GPT-2-medium

• # parameters ≈ 345M

• GPT-2-large

• # parameters ≈ 762M

• GPT-2-xl

• # parameters ≈ 1.5B
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Lecture Plan

• Pre-Training

• Encoder-Only Pre-Training

• Encoder-Decoder Pre-Training

• Decoder-Only Pre-Training

• Model Distillation
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Model Distillation

• Distill knowledge from a large model to a small model while maintaining 
similar capability

• Large model: teacher model

• Small model: student model

• Train a student model to mimic the behavior of the teacher model

• Reduce the number of parameters
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Why don’t we train a student model directly from data?



Model Distillation
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Mimic teacher’s behavior

Learn from data

https://onedreame.github.io/2020/12/10/%E6%A8%A1%E5%9E%8B%E8%92%B8%E9%A6%8F%E6%8E%A2%E7%B4%A2(Bert)/



Model Distillation
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https://onedreame.github.io/2020/12/10/%E6%A8%A1%E5%9E%8B%E8%92%B8%E9%A6%8F%E6%8E%A2%E7%B4%A2(Bert)/

𝑞𝑖 = softmax
𝑒𝑧𝑖/𝑇

σ𝑗 𝑒
𝑧𝑗/𝑇

𝑝𝑖 = softmax
𝑒𝑧𝑖/𝑇

σ𝑗 𝑒
𝑧𝑗/𝑇

ℒ𝐾𝐷 = 𝑇2 ⋅ 𝐾𝐿 𝑞 𝑝)

Distillation Loss



Model Distillation
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https://onedreame.github.io/2020/12/10/%E6%A8%A1%E5%9E%8B%E8%92%B8%E9%A6%8F%E6%8E%A2%E7%B4%A2(Bert)/

ℒ𝐶𝐸 = −
1

𝑚


𝑖

ℒ𝐶𝐸 𝑦𝑖 , 𝑦𝑖

Cross-Entropy Loss
𝑝𝑖 = softmax

𝑒𝑧𝑖/𝑇

σ𝑗 𝑒
𝑧𝑗/𝑇



Model Distillation
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https://onedreame.github.io/2020/12/10/%E6%A8%A1%E5%9E%8B%E8%92%B8%E9%A6%8F%E6%8E%A2%E7%B4%A2(Bert)/

ℒ𝑇𝑜𝑡𝑎𝑙 = 𝛼ℒ𝐾𝐷 + (1 − 𝛼)ℒ𝐶𝐸

Final Loss



DistilBERT
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DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, 2020



DistilBERT
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Smaller Size
• BERT-base

• 12 layers, hidden size = 768, 12 attention heads

• DistilBERT

• 6 layers, hidden size = 768, 12 attention heads

Almost similar performance



MobileBERT
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MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices, 2020



MobileBERT

• Instead of less layers, reduce the hidden size
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MobileBERT
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