CSCE 638 Natural Language Processing Foundation and Techniques

Lecture 10: Pre-Training and Model Distillation

Kuan-Hao Huang

Spring 2025

(Some slides adapted from Vivian Chen)

SIGIR 2025 LiveRAG Challenge

- <u>https://sigir2025.dei.unipd.it/live-rag-challenge.html</u>
- RAG: Retrieval Augmented Generation
- Advance RAG research and compare the performance of their solutions with other teams on a fixed corpus

SIGIR 2025 LiveRAG Challenge

Date (2025)	Details
Feb 24	Application submission deadline - SIGIR2025 easychair site (Select: SIGIR2025 LiveRAG Challenge track)
Mar 12	 Application submission notification to selected teams Opening of easychair site for short paper submission AWS and Pinecone resources and credits made available to selected teams together with detailed operational instructions
Mar 15	Training and testing tool (<u>DataMorgana</u>) made available to teams
May 8	"Dry" test for participants of live service on a small question set
May 12	Live Challenge Day – test questions shared and live service for answers submission opens
May 19	Short paper submission deadline - SIGIR2025 easychair site (Select: SIGIR2025 LiveRAG Challenge track)
May 29	Short paper notification and announcement of finalists
July 17	 LiveRAG Workshop at SIGIR'2025 in Padua, Italy Presentation of research by selected teams Announcement of winner and runner(s)-up

PRIZES

- First Prize: \$5000
- Second Prize: \$3000
- Third Prize: \$2000

Lecture Plan

- Pre-Training
 - Encoder-Only Pre-Training
 - Encoder-Decoder Pre-Training
 - Decoder-Only Pre-Training
- Model Distillation

Recap: Fine-Tuning with Pre-Training

Recap: Types of Pre-Training

Recap: BERT – Masked Language Modeling

http://jalammar.github.io/illustrated-bert/

Recap: BERT – Next Sentence Prediction

Recap: Other Encoder-Only Pre-Trained Models

- RoBERTa
- SpanBERT

Recap: Types of Pre-Training

Recap: BART – Denoising Objective

- Token Masking
 - A<mask>CD<mask>F. → ABCDEF
- Token Deletion
 - ACDF. \rightarrow ABCDEF.
- Text Infilling
 - A<mask>D<mask>F. → ABCDEF.
- Sentence Permutation
 - FG. ABC. DE. → ABC. DE. FG.
- Document Rotation
 - E. FG. ABC. D → ABC. DE. FG.

Generate original input

Encoder-Decoder: T5

• Text-to-Text Transfer Transformer (T5)

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel* CRAFFEL@GMAIL.COM Noam Shazeer^{*} NOAM@GOOGLE.COM Adam Roberts* ADAROB@GOOGLE.COM Katherine Lee* KATHERINELEE@GOOGLE.COM Sharan Narang SHARANNARANG@GOOGLE.COM Michael Matena MMATENA@GOOGLE.COM Yanqi Zhou YANQIZ@GOOGLE.COM Wei Li MWEILI@GOOGLE.COM Peter J. Liu PETERJLIU@GOOGLE.COM

Motivation: BART

Different ways when considering classification and seq2seq generation

Convert Everything to Text-to-Text Tasks

Masked Span Reconstruction (Seq2Seq Version)

Multi-Task Learning

- Convert everything to text-to-text tasks
- Jointly fine-tune them together

Multi-Task Learning

D.7 SST2

Original input:

Sentence: it confirms fincher 's status as a film maker who artfully bends technical know-how to the service of psychological insight .

Processed input: sst2 sentence: it confirms fincher 's status as a film maker who artfully bends technical know-how to the service of psychological insight

Original target: 1

Processed target: positive

Multi-Task Learning

D.4 MRPC

Original input:

Sentence 1: We acted because we saw the existing evidence in a new light, through the prism of our experience on 11 September, "Rumsfeld said.
Sentence 2: Rather, the US acted because the administration saw " existing evidence in a new light, through the prism of our experience on September 11 ".

Processed input: mrpc sentence1: We acted because we saw the existing evidence in a new light , through the prism of our experience on 11 September , " Rumsfeld said . sentence2: Rather , the US acted because the administration saw " existing evidence in a new light , through the prism of our experience on September 11 " .

Original target: 1

Processed target: equivalent

D.16 WMT English to German

Original input: "Luigi often said to me that he never wanted the brothers to end up in court," she wrote.

Processed input: translate English to German: "Luigi often said to me that he never wanted the brothers to end up in court," she wrote.

Original target: "Luigi sagte oft zu mir, dass er nie wollte, dass die Brüder vor Gericht landen", schrieb sie.

Processed target: "Luigi sagte oft zu mir, dass er nie wollte, dass die Brüder vor Gericht landen", schrieb sie.

Relative Position

Fine-Tuning: Text-to-Text For Everything

Promising Results

Model	QQP F1	QQP Accuracy	MNLI-m Accuracy	MNLI-mm Accuracy	QNLI Accuracy	RTE Accuracy	WNLI Accuracy
		h					
Previous best	74.8^{c}	90.7°	91.3^a	91.0^a	99.2^{a}	89.2^a	91.8^a
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	92.2	91.9	96.9	92.8	94.5
	SQuAI) SQuAD	SuperGLU	JE BoolQ	CB	CB	COPA
Model	$\mathbf{E}\mathbf{M}$	F1	Average	Accurac	y F1	Accuracy	Accuracy
Previous best	90.1^{a}	95.5^{a}	84.6^{d}	87.1^{d}	90.5^d	95.2^d	90.6^d
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	91.26	96.22	88.9	91 .2	93.9	96 .8	94.8
	MultiRC	MultiRC	ReCoRD	ReCoRD	RTE	WiC	WSC
Model	F1a	$\mathbf{E}\mathbf{M}$	F1	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	84.4^{d}	52.5^d	90.6^d	90.0^d	88.2^d	69.9^d	89.0^d
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.1	63.3	94.1	93.4	92.5	76.9	93.8

Use T5

- T5-small:
 - # parameters ≈ 60M
- T5-base:
 - # parameters ≈ 220M
- T5-large:
 - # parameters ≈ 770M
- T5-3B: #
 - parameters ≈ 3B
- T5-11B:
 - # parameters ≈ 11B

Types of Pre-Training

Decoder-Only: GPT

- Improving Language Understanding by Generative Pre-Training, OpenAl 2018
 - Generative Pre-trained Transformer (GPT)
- Language Models are Unsupervised Multitask Learners, OpenAl 2019
 - GPT-2
- Language Models are Few-Shot Learners, OpenAl 2020
 - GPT-3

Language Modeling

- Next word prediction
- Trained with large corpus

Comparison: Masked Language Models

Comparison: Causal Language Models

Causal Masking

GPT-3: From Fine-Tuning to Few-Shot Learning

• Even larger training data, even larger model size

GPT-3: From Fine-Tuning to Few-Shot Learning

• Solve entirely new tasks by few-shot learning (in-context learning)

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. // _____

Large Language Models

Types of Pre-Training

Use GPT

- GPT-2-small
 - # parameters ≈ 117M
- GPT-2-medium
 - # parameters ≈ 345M
- GPT-2-large
 - # parameters ≈ 762M
- GPT-2-xl
 - # parameters ≈ 1.5B

Lecture Plan

- Pre-Training
 - Encoder-Only Pre-Training
 - Encoder-Decoder Pre-Training
 - Decoder-Only Pre-Training
- Model Distillation

Model Distillation

- Distill knowledge from a large model to a small model while maintaining similar capability
 - Large model: teacher model
 - Small model: student model
- Train a student model to mimic the behavior of the teacher model
- Reduce the number of parameters

Why don't we train a student model directly from data?

Model Distillation

Mimic teacher's behavior

Learn from data

Model Distillation $q_i = \operatorname{softmax}\left(\frac{e^{z_i/T}}{\sum_i e^{z_j/T}}\right)$ **Teacher model** Layer Layer Layer Softmax (T = t) soft labels 2 m distillation Loss Fn loss input X soft Softmax (T = t) Student (distilled) model predictions Layer Layer Layer 2 n hard Softmax (T = 1) prediction student Loss Fn $p_i = \operatorname{softmax}\left(\frac{e^{z_i/T}}{\sum_i e^{z_j/T}}\right)$ loss **Distillation Loss** hard $\mathcal{L}_{KD} = T^2 \cdot KL(q|p)$ label y (ground truth)

Model Distillation

Model Distillation

DistilBERT

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

Victor SANH, Lysandre DEBUT, Julien CHAUMOND, Thomas WOLF Hugging Face {victor,lysandre,julien,thomas}@huggingface.co

DistilBERT

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Smaller Size

- BERT-base
 - 12 layers, hidden size = 768, 12 attention heads
- DistilBERT
 - 6 layers, hidden size = 768, 12 attention heads

Almost similar performance

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

MobileBERT

MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices

Zhiqing Sun¹*, Hongkun Yu², Xiaodan Song², Renjie Liu², Yiming Yang¹, Denny Zhou²

¹Carnegie Mellon University {zhiqings, yiming}@cs.cmu.edu ²Google Brain {hongkuny, xiaodansong, renjieliu, dennyzhou}@google.com

MobileBERT

• Instead of less layers, reduce the hidden size

			BERTLARGE	BERT _{BASE}	IB-BERT _{LARGE}	MobileBERT	MobileBERT _{TINY}					
embedding		hembedding	1024	768	128							
		no-op		no-op	3-convolution							
		hinter	1024	768	512							
Linear		h _{input}			[(512)]	[(512)]	[(512)]					
body -		houtput										
	MHA	h _{input} #Head h _{output}	$\left[\left(\begin{array}{c} 1024\\ 16\\ 1024 \end{array} \right) \right] \times 24$	$\left[\begin{array}{c} 768\\12\\768\end{array}\right]$	$\left \begin{array}{c} 512 \\ 4 \\ 1024 \end{array} \right \times 24$	$\left \begin{array}{c} \begin{array}{c} 512 \\ 4 \\ 128 \end{array} \right $	$\left \begin{array}{c} 128 \\ 4 \\ 128 \end{array} \right $					
	FFN	h _{input} h _{FFN} h _{output}	$\left[\left(\begin{array}{c} 1024\\ 4096\\ 1024 \end{array} \right) \right]^{\times 2}$	$\left \left[\left(\begin{array}{c} 768\\ 3072\\ 768 \end{array} \right) \right]^{\times 12} \right $	$\left \begin{array}{c} 1024\\ 4096\\ 1024 \end{array} \right ^{\times 24}$	$\left \begin{array}{c} 128\\512\\128\end{array}\right) \times 4 \right ^{\times 24}$	$\left \left(\begin{array}{c} 128\\512\\128 \end{array} \right) \times 2 \right ^{\times 24}$					
	Linear	h _{input} h _{output}			$\left[\left(\begin{array}{c} 1024\\ 512 \end{array} \right) \right]$	$\left[\left(\begin{array}{c} 128\\512 \end{array} \right) \right]$	$\left \left[\begin{array}{c} 128\\512 \end{array} \right] \right $					
#Params		5	334M	109M	109M 293M		15.1M					

MobileBERT

	#Doroma	arams #FI OPS		CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	CLUE
	#Γ αι α 1115	#FLOF5	Latency	8.5k	67k	3.7k	5.7k	364k	393k	108k	2.5k	GLUE
ELMo-BiLSTM-Attn	-	-	-	33.6	90.4	84.4	72.3	63.1	74.1/74.5	79.8	58.9	70.0
OpenAI GPT	109M	-	-	47.2	93.1	87.7	84.8	70.1	80.7/80.6	87.2	69.1	76.9
BERT _{BASE}	109M	22.5B	342 ms	52.1	93.5	88.9	85.8	71.2	84.6/83.4	90.5	66.4	78.3
BERT _{BASE} -6L-PKD*	66.5M	11.3B	-	-	92.0	85.0	-	70.7	81.5/81.0	89.0	65.5	-
BERT _{BASE} -4L-PKD ^{†*}	52.2M	7.6B	-	24.8	89.4	82.6	79.8	70.2	79.9/79.3	85.1	62.3	-
BERT _{BASE} -3L-PKD*	45.3M	5.7B	-	-	87.5	80.7	-	68.1	76.7/76.3	84.7	58.2	-
DistilBERT _{BASE} -6L†	62.2M	11.3B	-	-	92.0	85.0		70.7	81.5/81.0	89.0	65.5	-
DistilBERT _{BASE} -4L†	52.2M	7.6B	-	32.8	91.4	82.4	76.1	68.5	78.9/78.0	85.2	54.1	-
TinyBERT*	14.5M	1.2B	-	43.3	92.6	86.4	79.9	71.3	82.5/81.8	87.7	62.9	75.4
MobileBERT _{TINY}	15.1M	3.1B	40 ms	46.7	91.7	87.9	80.1	68.9	81.5/81.6	89.5	65.1	75.8
MobileBERT	25.3M	5.7B	62 ms	50.5	92.8	88.8	84.4	70.2	83.3/82.6	90.6	66.2	77.7
MobileBERT w/o OPT	25.3M	5.7B	192 ms	51.1	92.6	88.8	84.8	70.5	84.3/ 83.4	91.6	70.4	78.5