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Course Project: Sign-Up

• https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylam
XuV7Dtg7cBD2EU/edit?usp=sharing

• Please sign up by 2/26

• 3~4 each team
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https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylamXuV7Dtg7cBD2EU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15Rj4AovtHtlZxILbX1ydrw7lEylamXuV7Dtg7cBD2EU/edit?usp=sharing


Course Project: Project Highlight

• Date: 3/5 in person

• Each team has 3 minutes to introduce the project

• Introduction to the topic you choose

• Short related literature overview

• Novelty and challenges

• The dataset, models, and approaches you plan to use

• Evaluation plan

2



Lecture Plan

• Human Preference Optimization

• Reinforcement Learning from Human Feedback / Proximal Policy Optimization 

• Direct Preference Optimization

• Kahneman-Tversky Optimization

• Simple Preference Optimization

• Group Relative Policy Optimization
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Recap: Few-Shot Prompting / In-Context Learning
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Language Models are Few-Shot Learners, 2020

In-context learning examples
Demonstration examples



Recap: Chain-of-Thought Prompting
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Large Language Models are Zero-Shot Reasoners, 2022



Why Alignment?
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Instruction Tuning

• LLMs have knowledge, but don’t always generate the outputs we want

• Training LLMs to following human instructions
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Limitations of Instruction Fine-Tuning

• It is expensive to collect ground-truth data for tasks

• Open-ended creative generation have no right answer

• E.g., write me a story about a dog and her pet grasshopper

• language modeling penalizes all token-level mistakes equally, but some 
errors are worse than others
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Even with instruction finetuning, there is still a 
mismatch between the LM objective and 

“satisfying human preferences”!



Alignment Pipeline

9

Pre-Training
Supervised 
Fine-Tuning

Preference 
Optimization



Reinforcement Learning from Human Feedback (RLHF)
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Human Feedback

• Human reward
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Goal: maximize the expected reward of samples from our LM



Reinforcement Learning from Human Preferences
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How do we change the LM parameters 𝜃 to maximize this?



Reinforcement Learning
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Environment

Actor/Agent

State



Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Solutions
• Q-Learning
• Policy Gradient
• Actor-Critic
• …



Optimizing for Human Preferences
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Gradient Ascent

How do we change the LM parameters 𝜃 to maximize this?

Policy Gradient Methods in Reinforcement Learning
(REINFORCE) [Williams, 1992] 



Policy Gradient/REINFORCE
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Gradient Ascent

Log-Derivative Trick



Policy Gradient/REINFORCE
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We can approximate this objective with Monte Carlo samples



Policy Gradient/REINFORCE
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We reinforce good actions, increasing the chance they happen again



Proximal Policy Optimization (PPO)

• New parameters 𝜃′ cannot be very different from old parameters 𝜃 
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𝐽𝑃𝑃𝑂
𝜃′ 𝜃 = 𝐽𝜃

′
𝜃 − 𝛽𝐾𝐿 𝜃, 𝜃′

Regularization



How to Model Human Preferences?

• Now for any reward function 𝑅, we can train our language model to 
maximize expected reward

• Problem 1: human-in-the-loop is expensive

• Solution: instead of directly asking humans for preferences, model their 
preferences as a separate (NLP) problem

• Train a reward model (RM) from an annotated dataset
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How to Model Human Preferences?

• Now for any reward function 𝑅, we can train our language model to 
maximize expected reward

• Problem 2: human judgments are noisy and miscalibrated

• Solution: instead of asking for direct ratings, ask for pairwise comparisons, 
which can be more reliable

24



Training A Reward Model
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Reward Model vs. Real Human Feedback
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RLHF: Putting Everything All Together
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RLHF: Putting Everything All Together
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RLHF vs. Supervised Fine-Tuning 
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Alignment Pipeline
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Pre-Training
Supervised 
Fine-Tuning

Preference 
Optimization

Instruction
Data

Preference
Data



InstructGPT
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ChatGPT: Instruction Fine-tuning + RLHF for Dialog Agents
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Direct Preference Optimization (DPO)
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Direct Preference Optimization: Your Language Model is Secretly a Reward Model, 2023



RLHF: Proximal Policy Optimization (PPO) 
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Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)
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DPO Performance
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Large-Scale DPO Training
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Large-Scale DPO Training
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Kahneman-Tversky Optimization (KTO)
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Which One Do You Choose?

• Imagine you are facing two choices:

• Choice one: has an 80% chance of earning you 10 million US dollars, and a 
20% chance of giving you nothing

• Choice two: gives you 4 million US dollars for sure
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https://medium.com/@yianyao1994/llm-alignments-part-6-kto-813b38be14ae



Which One Do You Choose?

• Imagine you are facing two choices:

• Choice one: has an 80% chance of earning you 1 thousand US dollars, and a 
20% chance of giving you nothing

• Choice two: gives you 4 hundred US dollars for sure
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https://medium.com/@yianyao1994/llm-alignments-part-6-kto-813b38be14ae



Which One Do You Choose?

• Imagine you are facing two choices:

• Choice one: has an 80% chance of earning you 10 US dollars, and a 20% 
chance of giving you nothing

• Choice two: gives you 4 US dollars for sure
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https://medium.com/@yianyao1994/llm-alignments-part-6-kto-813b38be14ae



Prospect Theory
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2002 Nobel Prize-winning economists

https://medium.com/@yianyao1994/llm-alignments-part-6-kto-813b38be14ae



KTO Value Function
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Preference Data For PPO/DPO
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Training Data 𝑥, 𝑦1, 𝑦2



Preference Data For KTO

52

Training Data 𝑥, 𝑦

Acceptable?



KTO: Loss Function
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KTO Performance
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