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Course Project: Project Highlight

- Date: 3/5 in person
- Each team has 3 minutes to introduce the project
- Introduction to the topic you choose
- Short related literature overview
- Novelty and challenges
- The dataset, models, and approaches you plan to use

- Evaluation plan



Lecture Plan

- Human Preference Optimization
« Reinforcement Learning from Human Feedback / Proximal Policy Optimization
 Direct Preference Optimization
- Kahneman-Tversky Optimization
- Simple Preference Optimization
- Group Relative Policy Optimization



Recap: Few-Shot Prompting / In-Context Learning

Translate English to French:

sea otter => loutre de mer

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =>

In-context learning examples
Demonstration examples

Language Models are Few-Shot Learners, 2020

Unnatural Date Formatting: '<month>!<day>!<year>!

Accuracy
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(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of te@

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

N /
(c) Zero-shot

6: A juggler can juggle 16 balls. Half of the balls are golf ball&
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

Recap: Chain-of-Thought Prompting

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter%
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf

- /

Large Language Models are Zero-Shot Reasoners, 2022

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
We. So there are 8/ 2 = 4 blue golf balls. The answer is 4. //

(d) Zero-shot-CoT (Ours)

/Q: A juggler can juggle 16 balls. Half of the balls are golf balls}
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls

Qre blue. That means that there are 4 blue golf balls. v /




Why Alignment?

/—[ Model input (Disambiguation QA) ]—\

Q: In the following sentences, explain the
antecedent of the pronoun (which thing the
pronoun refers to), or state that it is ambiguous.

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options:

(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.
. J

(_{

The reporter and the chef will discuss their favorite
dishes.

The reporter and the chef will discuss the reporter's
favorite dishes.

The reporter and the chef will discuss the chef's
favorite dishes.

The reporter and the chef will discuss the reporter's
and the chef's favorite dishes.

I

Before instruction finetuning

¥ (doesn’t answer question)

e 7

/—[ Model input (Disambiguation QA) ]—\

Q: In the following sentences, explain the
antecedent of the pronoun (which thing the
pronoun refers to), or state that it is ambiguous.

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options:

(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.

. J

— M

The reporter and the chef will discuss their favorite
dishes does not indicate whose favorite dishes they
will discuss. So, the answer is (C). &

After instruction finetuning




Instruction Tuning

- LLMs have knowledge, but don’t always generate the outputs we want
 Training LLMs to following human instructions

ext

Te
Quality
Evaluation

Annotated task definitions Category Description
You will be given two pieces of text... One of them is simpler ... Input Content Primary description of the task input
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Limitations of Instruction Fine-Tuning

- |tis expensive to collect ground-truth data for tasks
- Open-ended creative generation have no right answer
- E.g., write me a story about a dog and her pet grasshopper

- language modeling penalizes all token-level mistakes equally, but some
errors are worse than others

adventure musical
is a fantasy TV show END

Even with instruction finetuning, there is still a
mismatch between the LM objective and
“satisfying human preferences”!

Avatar is a fantasy TV show



Alignment Pipeline

Pre-Training

(&

Supervised
Fine-Tuning

J

(&

Preference
Optimization

J




Reinforcement Learning from Human Feedback (RLHF)

Training language models to follow instructions
with human feedback

{ul ]
{lelf]

RLHF -F or L LM Long Ouyang* Jeff Wu*  Xu Jiang*  Diogo Almeida*  Carroll L. Wainwright*

- -
F ine Tu ni “g Pamela Mishkin®* Chong Zhang Sandhini Agarwal Katarina Slama  Alex Ray

HF P wcries with LU John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell’ Peter Welinder Paul Christiano*!

Jan Leike* Ryan Lowe*

OpenAl
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Human Feedback

Human reward

SAN FRANCISCO, An earthquake hit The Bay Area has
California (CNN) -- San Francisco. good weather but is
A magnitude 4.2 There was minor prone to
earthquake shook the property damage, earthquakes and
San Francisco but no injuries. wildfires.

51 S2

overturn unstable

objects.

R(s;) = 8.0 R(s,) = 1.2

Goal: maximize the expected reward of samples from our LM

E§~p9(s) [R (§)]

11



Reinforcement Learning from Human Preferences

How do we change the LM parameters 8 to maximize this?

]E§~pg (s) [R (§)]

( 23

AGENT

Observation Action

Policy

1

Reinforcement
Learning

Algorithm

\: K
Reward

ENVIRONMENT




Reinforcement Learning

Acto r/Age nt

Enwronment

fmf SLE

Trajectory 7 = {sy,0a,,5;,a5,*,S7, a7}

State

13



Reinforcement Learning

updated

14



Reinforcement Learning

S1 a, S2 a,

E V E ¥

v v v
S1 ay S2 a; S3

Trajectory © = {s;,a4,S,,ay,**, S, a7}

e (T)

= p(s1)pe(as|s)p(s21s1, a1)pe(az|s2)p(s3ls,, az) -

T
= p(s1) 1_[ Po(a;|s )p(Ses1lSe ar)
t=1

15



Reinforcement Learning

updated upd ated

Acto M
S1 S
| |

1 &)
| |

Expected Reward l
=) ROPs(@) = Erpyn[R@] RO

16



Reinforcement Learning

updated

Solutions

Q-Learning
Policy Gradient
Actor-Critic

17



Optimizing for Human Preferences

How do we change the LM parameters 6 to maximize this?

]E§~p9 (s) [R (§)]

Gradient Ascent

Oiv1 =0+« VBtIE§~p9t(s) [R(3)]

Policy Gradient Methods in Reinforcement Learning
(REINFORCE) [Williams, 1992]

18



Policy Gradient/REINFORCE

Gradient Ascent

9t+1 = et T a VBtIE§~p9t(s) [R(§)]

VoEspys)[R(S)] = Vg Z R(s)pe(s) = z R(s) Vgpg(s)

Log-Derivative Trick

1
Vg log pg(s) = Vope(s) =  Vgpg(s) = Vg logpg(s) pe(s)
pe(s)



Policy Gradient/REINFORCE

VoEs p,(s)[R(5)] = z R(s) Vgpg(s) = Z po(s)R(s) Vg log pg(s)

= Egp,s)[R(5) Vg log pg(3)]
We can approximate this objective with Monte Carlo samples

m
1
VoEs-py(s)[R(E)] = Egp,s)[R(S) Vg log pg ()] = EZ R(s;) Vg log pg(s;)
i=1

20



Policy Gradient/REINFORCE

| Take gradient steps
If R is +++ to maximize pg(s;)

m /

1
Ory1= 0 + “EZ R(s;) Vg, log pg, (s;)
i=1

/ \

If R is --- Take steps to
minimize pg (s;)

We reinforce good actions, increasing the chance they happen again

21



Proximal Policy Optimization (PPO)

- New parameters 8’ cannot be very different from old parameters 8

80 (0) = J¢'(6) — BKL(6,0")

\

Regularization

22



How to Model Human Preferences?

- Now for any reward function R, we can train our language model to
maximize expected reward

- Problem 1: human-in-the-loop is expensive

- Solution: instead of directly asking humans for preferences, model their
preferences as a separate (NLP) problem

« Train a reward model (RM) from an annotated dataset

1.2

The Bay Area .. ... wildfires

23



How to Model Human Preferences?

- Now for any reward function R, we can train our language model to
maximize expected reward

- Problem 2: human judgments are noisy and miscalibrated

- Solution: instead of asking for direct ratings, ask for pairwise comparisons,
which can be more reliable

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but is
There was minor > San Francisco, > prone to

property damage, resulting in earthquakes and
but no injuries. massive damage. wildfires.

S1 S3 So

24



Training A Reward Model

The Bay Area .. ... wildfires

Bradley-Terry [1952] paired comparison model
Jrm (@) = —E(w 1y p|log a(RMg(s™) — RMy(s"))]
X

“winning”  “losing” s" should score
sample  sample higher than s*

25



Reward Model vs. Real Human Feedback

Large enough RM
trained on enough

single human perf

Ensemble of humans

3-0.80-

© ' .

= Human baseline _ _ ~ data approaching
64k

8 0.75¢ 32k

o 16k

- 8k

(@) 0.70t Data

= 0.

I\

O

@ 0.65}

>

108 10° 1010

Model size

[Stiennon et al., 2020]
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RLHF: Putting Everything All Together

 We have the following:
* A pretrained (possibly instruction-finetuned) LM p*7 (y | x)

* Areward model RMy (x, y) that produces scalar rewards for LM outputs, trained on
a dataset of human comparisons

* Now to do RLHF:

» Copy the model p;“(y |x) , with parameters & we would like to optimize

* We want to optimize:
By pBL o)) [RMg (X, Y]

27



RLHF: Putting Everything All Together

* We want to optimize:
Ey . pRL o)) [RMg (%, )]
Do you see any problems?
* Learned rewards are imperfect; this quantity can be imperfectly optimized
* Add a penalty for drifting too for from the initialization:

RL /-
. pe- (¥ | x)
IEyNPgL(ﬂx) [RM¢(x, y) — B log ( )]

p™t (@ | x) g
Pay a price when Y
ng @ %) >p"@|x) This penalty which prevents us from diverging too far from the

pretrained model. In expectation, it is known as the Kullback-Leibler (KL)
divergence between p;" (¥ | x) and pPT (| x).

28



RLHF vs.

Supervised Fine-Tuning
RL
w— 0.7 p (S)
O
S
= 0.67
O
o
-
O 05F====mm - e e e e e
“q:) Reference summaries P IFT (S)
Q 4t |
5 Supervised learning - pPT(S)
© 0.3} sl
@©
| -
L
0.2  Pretrainonly | o |
1.3B 2.7B 6.7B 12.9B

Model size
[Stiennon et al., 2020]
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Alignment Pipeline

Pre-Training

Supervised
Fine-Tuning

Preference
Optimization

Instruction
Data

Preference
Data

30



InstructGPT

Step1

Collect demonstration data,
and train a supervised policy.

Step 2

Collect comparison data,
and train a reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a é year old

:

2

Some people went
to the moon...

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

o o

Explain gravity. Explain war...

ural Il

A new prompt

is sampled from wm::tory
the dataset. about frogs
|
) Y
The policy .
enerates . 9
J o%o -
an output. W
|
Y

Y
The reward model -
calculates a ./;?.5&.
reward for W
the output.

|

\j
The reward is )
used to update rk
the policy
using PPO.

31



ChatGPT: Instruction Fine-tuning + RLHF for Dialog Agents

ChatGPT: Optimizing

Language Models
for Dialogue

Note: OpenAl (and similar
companies) are keeping
more details secret about
ChatGPT training
(including data, training
parameters, model size)—
perhaps to keep a
competitive edge...

Methods

We trained this model using Reinforcement Learning from Human
Feedback (RLHF), using the same methods as InstructGPT, but with
slight differences in the data collection setup. We trained an initial
model using supervised fine-tuning: human Al trainers provided
conversations in which they played both sides—the user and an Al
assistant. We gave the trainers access to model-written suggestions to
help them compose their responses. We mixed this new dialogue
dataset with the InstructGPT dataset, which we transformed into a
dialogue format.

32



Direct Preference Optimization (DPO)

Reinforcement Learning from Human Feedback (RLHF)

x: “write me a poem about

the history of jazz" ® label rewards ®
— P = —> reward model LM policy @

: ® . @
preference data maximum sample completions

likelihood reinforcement learning

Direct Preference Optimization: Your Language Model is Secretly a Reward Model, 2023

Direct Preference Optimization (DPO)

x: “write me a poem about
the history of jazz"

&k *
— |>|=| ——> finalM
W
preference data aximum
likelihood

33



RLHF: Proximal Policy Optimization (PPO)

An earthquake hit The Bay Area has
San Francisco. good weather but 1is
There was minor > prone to
property damage, earthquakes and
but no injuries. wildfires.

The Bay Area .. .. wildfires S1 So

Lr(T¢, D) = —E 4 )~ 1080 (T4 (2, yw) — ro(z,11))]

34



Direct Preference Optimization (DPO)

RLHF Objecti
(gethighrewar:,est(:ly::l‘:: m,]?JX E"I"ND:yNW(y|$) [T(.’I),y)] o /BDKL(’]T(. | :B)”?Tref(. | x))

to reference model) / \

Maximize reward Keep similar behavior

max Eop yor [1(2,y)] — BDxL[m(yle) || mer(y|)]

m(y|) ]

=maxE, pE, vl ['r x,y) — Blog
p DSy~m(y|z) (z,y) et (y|2)

. m(ylz) 1
= H%TIHEQZNDEQNW(MIB) []'Og ﬂ-ref(ylm) - Er(xiy)]

m(ylz) — log Z(:E)}
Z(ay et (y|7) exp (%’r(w, y))

= min Ez o pEymr(y|a) |:10g

2(2) = ¥ mslole)exp ( r(zn))

Y

35



Direct Preference Optimization (DPO)

RLHF Objecti
(gethighrewar:,est(:ly::l‘:: m,]?JX E"I"ND:yNW(y|$) [T(.’I),y)] o /BDKL(’]T(. | :B)”?Tref(. | x))

to reference model) / \

Maximize reward Keep similar behavior
T (y|x) = L'JT (y|z) exp l'Jr“(::: Y) min By pEyr(ylz) |log iyl — log Z ()
Z(z) et g " ﬁﬁref(mm) eXp (%fr(az,y))
= minE; p |Eyornylo) llog m(y|z) ] — log Z(.’E)]
m | m™(y|z)

— minE,.p De(r(ylz) || 7*(y]z)) — log Z(2)

0le) = 7 (ule) = s mele) exp (%r(sc,m)

36



Direct Preference Optimization (DPO)

RLHF Objective

(get high reward, stay close
to reference model)

Closed-form
Optimal Policy

(write optimal policy as
function of reward function;
from prior work)

Rearrange

(write any reward function as
function of optimal policy)

max Byp y~r(ylz) [1(2,Y)] = BDKL(7(- | 2)||mret (- | 2))

/ N\

Maximize reward Keep similar behavior

(1 )ﬂ'ref(y | z) exp (%r(w,y))

y | ) exp (%r(m,y)) —

Note intractable sum over possible
responses; can’t immediately use this

Ratio is positive if policy likes response

more than reference model, negative if
/ policy likes response less than ref. model

myle) 7 Blog Z(z)

Tref (Y | T)

Y

B log

'r(x,y) —

some parameterization of a reward function

37



Direct Preference Optimization (DPO)

Derived from the Bradley-Terry model of human preferences:

A loss function on
ﬁR(T: D) — _E(w,yw,yz)ND [log O'(T'(CE, y’w) - T(.’B, yl))]

reward functions

An earthquake hit The Bay Area has
San Francisco. good weather but is
There was minor > prone to

property damage, earthquakes and
but no injuries. wildfires.

The Bay Area .. ... wildfires S1 So

38



Direct Preference Optimization (DPO)

Derived from the Bradley-Terry model of human preferences:

A loss function on
reward functions Lr(r,D) = =K@y, p)~D log o(r(z, yw) — r(z,41))]

==

A transformation
between reward o (T,y) = Blog mo(y | )
functions and policies Tref(Y | T)

+ Blog Z(x)

39



Direct Preference Optimization (DPO)

Derived from the Bradley-Terry model of human preferences:

‘C'R(rv D) — _E(m,yw,’yz)N'D [10g0‘(’l"(£l3, y’w) - ’I“(SC, yl))]

A loss function on
reward functions

=

A transformation o (y | w)
between reward o (x,y) = Blog + Blog Z(x)
functions and policies Tret(Y | )
| ]
e Reward of Reward of
preferred dispreferred
response response

A loss function
mo(yw | 2) gy moly | 2 )]

on policies  Lppo (mg; Trer) = —E(zy )~ [logf’ (5 P el B o
re W re

40



Direct Preference Optimization (DPO)

To(Yw | T)
7Tref(yw ’ :L')

Reward of preferred response

EDPO(Wo;Wref) = _E(m,yw,yl)N'D lloga (5 log

Vo Lppo(Te; Tret) =

— BE(m,yw,yg)ND[ o(Po(z,y1) — 7o(2, Yw)) [Y@ log (yw | ) — Vglogn(y; | x)

Y Y o

flog Zf(éflz || ?) )]

Reward of dispreferred response

Y

higher weight when reward estimate is wrong  increase likelihood of y,,  decrease likelihood of y;

|

41



DPO Performance

IMDb Sentiment Generation

1.0 A ®
@ @
0.9 o Sl ¢ i T
® .:0.0..‘
oo ® .
0.8 ® ®
@ .‘ 'Oo.‘.
@ @ @
-r% 0.7 ae®e e® o°
; g ® 0.. e
Q @ .5 s 0’. P 0... W
106 .‘ 0 & = . ® o° 0 ....o.o
% ®
0.5 - » ." ’
- . DPO (Ours) e PPO-GT (Our impl.)
e Unlikelihood e PPO-GT (TRL)
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Large-Scale DPO Training

ZEPHYR: DIRECT DISTILLATION OF LM ALIGNMENT

Lewis Tunstall,* Edward Beeching,* Nathan Lambert, Nazneen Rajani,
Kashif Rasul, Younes Belkada, Shengyi Huang, Leandro von Werra,
Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero,
Alexander M. Rush, and Thomas Wolf

The H4 (Helpful, Honest, Harmless, Huggy) Team
https://huggingface.co/HuggingFaceH4
lewis@huggingface.co
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Large-Scale DPO Training

Llama 3.2: Revolutionizing edge Al and vision
with open, customizable models
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In post-training, we use a similar recipe as Llama 3.1 and produce final chat models by doing
several rounds of alignment on top of the pre-trained model. Each round involves supervised
fine-tuning (SFT), rejection sampling (RS), and direct preference optimization (-).
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Kahneman-Tversky Optimization (KTO)

Implied Human Value
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Which One Do You Choose?

- Imagine you are facing two choices:

 Choice one: has an 80% chance of earning you 10 million US dollars, and a
20% chance of giving you nothing

 Choice two: gives you 4 million US dollars for sure

https://medium.com/@yianyao1994/lim-alignments-part-6-kto-813b38bel4ae
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Which One Do You Choose?

- Imagine you are facing two choices:

 Choice one: has an 80% chance of earning you 1 thousand US dollars, and a
20% chance of giving you nothing

 Choice two: gives you 4 hundred US dollars for sure

https://medium.com/@yianyao1994/lim-alignments-part-6-kto-813b38bel4ae
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Which One Do You Choose?

- Imagine you are facing two choices:

 Choice one: has an 80% chance of earning you 10 US dollars, and a 20%
chance of giving you nothing

 Choice two: gives you 4 US dollars for sure

https://medium.com/@yianyao1994/lim-alignments-part-6-kto-813b38bel4ae
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Prospect Theory

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e -

Prospect theory explains why humans make decisions about
uncertain events that do not maximize expected value. It
formalizes how humans perceive random variables in a biased but
well-defined manner;

for example, relative to some reference point, humans are more
sensitive to losses than gains, a property called loss aversion.

2002 Nobel Prize-winning economists

Daniel Kahneman

Amos Tversky

https://medium.com/@yianyao1994/lim-alignments-part-6-kto-813b38bel4ae
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KTO Value Function

Implied Human Value
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Preference Data For PPO/DPO

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

The Bay Area .. ... wildfires S1

Training Data (x, y1, y,)

>

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

S2
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Preference Data For KTO

The

Bay Area

An earthquake hit
San Francisco.
There was minor
property damage,
but no injuries.

.. wildfires S1

Training Data (x, y)

Acceptable?
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KTO: Loss Fu
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KTO Performance
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Does the aligned model beat the SFT target?
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