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Course Project – Proposal

• Due: 3/3 11:59pm 

• Page limit: 2 pages (excluding references)

• Format: ACL style

• The proposal should include

• Introduction to the topic you choose

• Related literature

• Novelty and challenges

• The dataset, models, and approaches you plan to use

• Evaluation plan
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https://2023.aclweb.org/calls/style_and_formatting/


Course Project: Project Highlight

• Put your slides here

• https://docs.google.com/presentation/d/1FbPJxciLrXIiH3srVR3bSENRfyBM8p8
6M4DQtoLuBmo/edit?usp=sharing

• Date: 3/5 in person

• Each team has 3 minutes to introduce the project

• Introduction to the topic you choose

• Short related literature overview

• Novelty and challenges

• The dataset, models, and approaches you plan to use

• Evaluation plan
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https://docs.google.com/presentation/d/1FbPJxciLrXIiH3srVR3bSENRfyBM8p86M4DQtoLuBmo/edit?usp=sharing
https://docs.google.com/presentation/d/1FbPJxciLrXIiH3srVR3bSENRfyBM8p86M4DQtoLuBmo/edit?usp=sharing


Presentation Order
1. Team 10

2. Team 23

3. Team 6

4. Team 9

5. Team 2

6. Team 22

7. Team 5

8. Team 15

9. Team 4

10. Team 13

11. Team 1

12. Team 8

13. Team 11

14. Team 25

15. Team 12

16. Team 3

17. Team 18

18. Team 21

19. Team 17

20. Team 24

21. Team 20

22. Team 26

23. Team 16

24. Team 14

25. Team 7

26. Team 19

27. Team 27
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Assignment 2

• https://khhuang.me/CSCE638-S25/assignments/assignment2_0224.pdf

• Due: 3/17 11:59pm 

• Summit a .zip file to Canvas

• submission.pdf for the writing section

• submission[x].py and submission[x].ipynb for the coding section

• For questions

• Discuss on Canvas

• Send an email to csce638-ta-25s@list.tamu.edu, don’t need to CC TA or me
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https://khhuang.me/CSCE638-S25/assignments/assignment2_0224.pdf
mailto:csce638-ta-25s@list.tamu.edu


Quiz 2

• Date: 3/17

• 15 minutes before the end of the lecture

• 5 questions focusing on high-level concepts
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Assignment 1

• Average: 97.40

• Median: 98

• Standard deviation: 4.30

• (before applying late penalty)
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Rahul Baid

Email: rahulbaid@tamu.edu

Office Hour: Wed. 12pm – 1pm

Office: PETR 359

TA

mailto:rahulbaid@tamu.edu


Lecture Plan

• Human Preference Optimization

• Simple Preference Optimization

• Group Relative Policy Optimization

• Text Similarity

• Sentence-BERT

• SimCSE, DIffCSE, DPR

• Retrieval-Augmented Generation
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Recap: RLHF/PPO
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Recap: RLHF/PPO
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Recap: RLHF/PPO
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Recap: Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Simple Preference Optimization (SimPO)

13
SimPO: Simple Preference Optimization with a Reference-Free Reward, 2024



Look Back at DPO
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How does reference model affect the behavior?

𝑟 𝑥, 𝑦𝑤 > 𝑟 𝑥, 𝑦𝑙 ⇒ 𝑝𝜃 𝑦𝑤 𝑥 > 𝑝𝜃 𝑦𝑙 𝑥 ?



Solution: Reference-Free Reward
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𝑟 𝑥, 𝑦 =

𝑖=1

𝑦

log 𝜋𝜃 𝑦𝑖|𝑥, 𝑦<𝑖

Length bias! 
The model tends to generate longer 

sequence to maximize reward



Solution: Reference-Free Reward
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Reward margin



SimPO Performance
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Group Relative Policy Optimization (GRPO)
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Deepseek uses it!



Recap: Reward Model in PPO

• Train a reward model (RM) from an annotated dataset
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Group Relative Policy Optimization (GRPO)

• Consider group relative reward

• Given 𝑥, sample multiple output 𝑦1, 𝑦2, … , 𝑦𝐺
• Use reward model to get reward 𝑟1, 𝑟2, … , 𝑟𝐺
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𝐴𝑖 =
𝑟𝑖 −𝑚𝑒𝑎𝑛(𝑟1, 𝑟2, … , 𝑟𝐺)

𝑠𝑡𝑑(𝑟1, 𝑟2, … , 𝑟𝐺)



Lecture Plan

• Human Preference Optimization

• Simple Preference Optimization

• Group Relative Policy Optimization

• Text Similarity

• Sentence-BERT

• SimCSE, DIffCSE, DPR

• Retrieval-Augmented Generation
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Text Similarity
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Document Clustering
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https://medium.com/@danielafrimi/text-clustering-using-nlp-techniques-c2e6b08b6e95



Information Retrieval
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Recommendation Systems
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Semantic Quality Control

• Paraphrase generation

• Style transfer

• Plagiarism detection
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We will go hiking if tomorrow is a sunny day.

If it is sunny tomorrow, we will go hiking.



In-Context Example Selection
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Language Models are Few-Shot Learners, 2020

In-context learning examples
Demonstration examples



Semantic Textual Similarity Benchmark
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A soccer player is kicking the soccer 
ball into the goal from a long way 

down the field.

A soccer player kicks the ball into 
the goal.

3.25

Earlier this month, RIM had said it 
expected to report second-quarter 

earnings of between 7 cents and 11 
cents a share.

Excluding legal fees and other 
charges it expected a loss of 

between 1 and 4 cents a share.

1.2

David Beckham Announces 
Retirement From Soccer.

David Beckham retires from 
football.

4.4

… … …

3.94

0.5

3.8

…



Pearson’s Correlation Coefficient
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https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php



Spearman’s Correlation Coefficient

• Pearson’s correlation coefficient on rank

• Score

• Human: [1.2, 3.4, 2.5, 0.7, 4.0]

• Machine: [0.5, 3.3, 1.0, 1.2, 3.4]

• Rank

• Human: [4, 2, 3, 5, 1]

• Machine: [5, 2, 4, 3, 1]

• Assesses monotonic relationships

• whether linear or not
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https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient



A Simple Approach: Text Encoder + Cosine Similarity
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𝐸1 = Encoder(𝑆1)

𝐸2 = Encoder(𝑆2)

Similarity 𝑆1, 𝑆2 =
𝐸1 ⋅ 𝐸2
𝐸1 𝐸2

Unfortunately, the performance is bad (why?)



A Simple Approach: Text Encoder + Cosine Similarity
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Pre-trained BERT embeddings are more 
about lexical information

Good classification performance ≠ Good similarity

We will go hiking if tomorrow is a sunny day.

If it is sunny tomorrow, we will go hiking.

Let’s go to hike once tomorrow is sunny.



Sentence-BERT

• Consider SNLI dataset

• Stanford Natural Language Inference
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A boy is jumping on skateboard in 
the middle of a red bridge.

The boy skates down the sidewalk. Contradiction

A boy is jumping on skateboard in 
the middle of a red bridge.

The boy is wearing safety equipment. Neutral

A boy is jumping on skateboard in 
the middle of a red bridge.

The boy does a skateboarding trick. Entailment



Sentence-BERT
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Contradiction Neutral Entailment

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks



Sentence-BERT
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Contradiction Neutral Entailment

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

Cross Entropy Loss

Triplet Loss



Sentence-BERT: Performance
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SimCSE

• Simple Contrastive Learning of Sentence Embeddings 

37

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss

If it is sunny tomorrow, we will go hiking. If [mask] is sunny tomorrow, we [mask] go hiking.

Generate positive example with masking



Dropout
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Generate positive example with neuron masking

Dropout: A Simple Way to Prevent Neural Networks from Overfitting



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 2

Sentence 1

Sentence 2’

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive LossSentence 2



SimCSE: Performance
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DiffCSE

50
DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings



DiffCSE: Performance
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Dense Passage Retrieval
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We will go hiking if tomorrow is a sunny day.

If it is sunny tomorrow, we will go hiking.

Similarity between two sentences

Similarity between query and documents

Dense Passage Retrieval for Open-Domain Question Answering



Lecture Plan

• Human Preference Optimization

• Simple Preference Optimization

• Group Relative Policy Optimization

• Text Similarity

• Sentence-BERT

• SimCSE, DIffCSE, DPR

• Retrieval-Augmented Generation
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Retrieval-Augmented Generation (RAG)
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https://pureinsights.com/blog/2023/what-is-retrieval-augmented-generation-rag/



Retrieval-Augmented Generation (RAG)
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Question LLM Output

Question LLM Output
Retrieved

Documents



Retrieval-Augmented Generation (RAG)
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How to Train A Retriever?
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How to Train A Retriever?
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Retrieval-Augmented Generation (RAG)
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Why RAG?

• LLMs can’t memorize all (long-tail) knowledge in their parameters

60



Why RAG?

• LLMs’ knowledge is easily outdated and hard to update

61



Why RAG?

• LLMs’ output is challenging to interpret and verify
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Why RAG?

• LLMs are shown to easily leak private training data
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Why RAG?

• Potentially leverage other modalities

• Knowledge base

• Tabular data

• …
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Challenges with RAG

• Longer input text

• Length generalization

• KV cache

• The lost-in-the-middle problem
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The Lost-in-the-Middle Problem
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Query LLM Output

Retrieved Documents

Lost in the Middle: How Language Models Use Long Contexts, 2023



The Lost-in-the-Middle Problem
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Query LLM Output

Retrieved Documents

Lost in the Middle: How Language Models Use Long Contexts, 2023

Ground 
Truth



The Lost-in-the-Middle Problem
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Query LLM Output

Retrieved Documents

Lost in the Middle: How Language Models Use Long Contexts, 2023



The Lost-in-the-Middle Problem
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Query LLM Output

Retrieved Documents

Lost in the Middle: How Language Models Use Long Contexts, 2023



Reasons for Positional Bias: Pre-Training Data

70

Introduction

First Main Point

Second Main Point

Third Main Point

Conclusion

The 5 Paragraph Essay Outline

Topic sentence. xxxx
xxxx xxx xx xxxx xx xxx 
xxxxxxx xx xx x x xxxxx 
xxxx xx xxxxx xx xxx xx 
xx xxx xxx x xxxx xxx.

Topic Sentence

Topic sentence. xxxx
xxxx xxx xx xxxx xx xxx 
xxxxxxx xx xx x x xxxxx 
xxxx xx xxxxx xx xxx xx 
xx xxx xxx x xxxx xxx.



Reasons for Positional Bias: Attention Mechanism

71

𝑥1

𝑞𝑖 = 𝑊𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑉𝑥𝑖

Output



Reasons for Positional Bias: Attention Mechanism
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𝑥1 𝑥2

𝑞𝑖 = 𝑊𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑉𝑥𝑖

Output



Reasons for Positional Bias: Attention Mechanism
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𝑥1 𝑥2 𝑥3

𝑞𝑖 = 𝑊𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑉𝑥𝑖

Output



Reasons for Positional Bias: Attention Mechanism
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𝑥1 𝑥2 𝑥3 𝑥4

𝑞𝑖 = 𝑊𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑉𝑥𝑖

Output



Reasons for Positional Bias: Attention Mechanism
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑞𝑖 = 𝑊𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑉𝑥𝑖

Output

Position

𝑤1
𝑤2

𝑤3

𝑤4
𝑤5

𝑤1 𝑤2𝑤3 𝑤4 𝑤5

Causal Attention Mask



Reasons for Positional Bias: Positional Encoding
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Rotary Position Embedding 
(RoPE)

RoFormer: Enhanced Transformer with Rotary Position Embedding, 2021
Position



Combine All Together
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Lecture Plan

• Human Preference Optimization

• Simple Preference Optimization

• Group Relative Policy Optimization

• Text Similarity

• Sentence-BERT

• SimCSE, DIffCSE, DPR

• Retrieval-Augmented Generation
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