CSCE 638 Natural Language Processing Foundation and Techniques

Lecture 14: Alignment, Text Similarity, Retrieval-Augmented Generation

Kuan-Hao Huang

Spring 2025

(Some slides adapted from Graham Neubig and ACL 2023 Tutorial: Retrieval-based Language Models and Applications)

Course Project – Proposal

- Due: 3/3 11:59pm
- Page limit: 2 pages (excluding references)
- Format: <u>ACL style</u>
- The proposal should include
 - Introduction to the topic you choose
 - Related literature
 - Novelty and challenges
 - The dataset, models, and approaches you plan to use
 - Evaluation plan

Course Project: Project Highlight

- Put your slides here
 - <u>https://docs.google.com/presentation/d/1FbPJxciLrXliH3srVR3bSENRfyBM8p8</u>
 <u>6M4DQtoLuBmo/edit?usp=sharing</u>
- Date: 3/5 in person
- Each team has 3 minutes to introduce the project
 - Introduction to the topic you choose
 - Short related literature overview
 - Novelty and challenges
 - The dataset, models, and approaches you plan to use
 - Evaluation plan

Presentation Order

1.	Team 10	15.	Team 12
2.	Team 23	16.	Team 3
3.	Team 6	17.	Team 18
4.	Team 9	18.	Team 21
5.	Team 2	19.	Team 17
6.	Team 22	20.	Team 24
7.	Team 5	21.	Team 20
8.	Team 15	22.	Team 26
9.	Team 4	23.	Team 16
10.	Team 13	24.	Team 14
11.	Team 1	25.	Team 7
12.	Team 8	26.	Team 19
13.	Team 11	27.	Team 27
14.	Team 25		

Assignment 2

- <u>https://khhuang.me/CSCE638-S25/assignments/assignment2_0224.pdf</u>
- Due: 3/17 11:59pm
- Summit a .zip file to Canvas
 - submission.pdf for the writing section
 - submission[x].py and submission[x].ipynb for the coding section
- For questions
 - Discuss on Canvas
 - Send an email to <u>csce638-ta-25s@list.tamu.edu</u>, don't need to CC TA or me

Quiz 2

- Date: 3/17
 - 15 minutes before the end of the lecture
 - 5 questions focusing on high-level concepts

Assignment 1

- Average: 97.40
- Median: 98
- Standard deviation: 4.30
- (before applying late penalty)

Rahul Baid Email: <u>rahulbaid@tamu.edu</u> Office Hour: Wed. 12pm – 1pm Office: PETR 359

Lecture Plan

- Human Preference Optimization
 - Simple Preference Optimization
 - Group Relative Policy Optimization
- Text Similarity
 - Sentence-BERT
 - SimCSE, DIffCSE, DPR
- Retrieval-Augmented Generation

Recap: RLHF/PPO

Recap: RLHF/PPO

- We have the following:
 - A pretrained (possibly instruction-finetuned) LM $p^{PT}(y \mid x)$
 - A reward model $RM_{\phi}(x, y)$ that produces scalar rewards for LM outputs, trained on a dataset of human comparisons
- Now to do RLHF:
 - Copy the model $p_{\theta}^{RL}(y | x)$, with parameters θ we would like to optimize
 - We want to optimize:

$$\mathbb{E}_{\hat{y} \sim p_{\theta}^{RL}(\hat{y}|x)} \left[RM_{\phi}(x, \hat{y}) - \beta \log \left(\frac{p_{\theta}^{RL}(\hat{y} \mid x)}{p^{PT}(\hat{y} \mid x)} \right) \right]$$

Recap: RLHF/PPO

An earthquake hit A 4.2 magnitude San Francisco. There was minor > San Francisco, property damage, but no injuries. massive damage.

earthquake hit resulting in

The Bay Area has good weather but is > prone to earthquakes and wildfires.

*S*₁

S_3

 S_2

Bradley-Terry [1952] paired comparison model $J_{RM}(\phi) = -\mathbb{E}_{(s^{w}, s^{l}) \sim D} \left[\log \sigma(RM_{\phi}(s^{w}) - RM_{\phi}(s^{l})) \right]$ "winning" "losing" should score sample sample higher than s^l

Recap: Direct Preference Optimization (DPO)

RLHF Objective $\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(y|x)} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left(\pi(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x) \right)$ (get high reward, stay close to reference model) Keep similar behavior Maximize reward $\pi^*(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$ with $Z(x) = \sum_{u} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$ Note intractable sum over possible responses; can't immediately use this **Closed-form Optimal Policy** (write optimal policy as function of reward function; from prior work) Ratio is **positive** if policy likes response more than reference model, negative if policy likes response less than ref. model $r(x,y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{rot}(y \mid x)} + \beta \log Z(x)$ Rearrange (write any reward function as function of optimal policy)

some parameterization of a reward function

Direct Preference Optimization (DPO)

Derived from the Bradley-Terry model of human preferences:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

A loss function on reward functions

$$r_{\pi_{\theta}}(x, y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{\mathrm{ref}}(y \mid x)} + \beta \log Z(x)$$

A loss function
on policies
$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Simple Preference Optimization (SimPO)

$$egin{aligned} \mathcal{L}_{ extbf{DPO}}(\pi_{ heta};\pi_{ ext{ref}}) = \ &-\mathbb{E}\Big[\log\sigma\Big(eta\lograc{\pi_{ heta}(y_w\mid x)}{\pi_{ ext{ref}}(y_w\mid x)} - eta\lograc{\pi_{ heta}(y_l\mid x)}{\pi_{ ext{ref}}(y_l\mid x)}\Big)\Big] \ &\mathcal{L}_{ ext{SimPO}}(\pi_{ heta}) = \ &-\mathbb{E}\Big[\log\sigma\Big(rac{eta}{|y_w|}\log\pi_{ heta}(y_w\mid x) - rac{eta}{|y_l|}\log\pi_{ heta}(y_l\mid x) - eta\Big)\Big] \end{aligned}$$

Look Back at DPO

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right] \right]$$
Reward of preferred response Reward of dispreferred response

How does reference model affect the behavior?

$$r(x, y_w) > r(x, y_l) \Rightarrow p_\theta(y_w|x) > p_\theta(y_l|x)?$$

Solution: Reference-Free Reward

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Reward of preferred response

Reward of dispreferred response

$$r(x, y) = \sum_{i=1}^{|y|} \log \pi_{\theta}(y_i | x, y_{< i})$$

Length bias! The model tends to generate longer sequence to maximize reward

Solution: Reference-Free Reward

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Reward of preferred response

Reward of dispreferred response

$$r_{\text{SimPO}}(x,y) = \frac{\beta}{|y|} \log \pi_{\theta}(y \mid x) = \frac{\beta}{|y|} \sum_{i=1}^{|y|} \log \pi_{\theta}(y_i \mid x, y_{< i})$$

Reward margin

$$\mathcal{L}_{\text{SimPO}}(\pi_{\theta}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\frac{\beta}{|y_w|} \log \pi_{\theta}(y_w | x) - \frac{\beta}{|y_l|} \log \pi_{\theta}(y_l | x) - \gamma \right) \right]$$

SimPO Performance

	Mistral-Base (7B)				Mistral-Instruct (7B)					
Method	AlpacaEval 2		Arena-Hard	MT-Bench		AlpacaEval 2		Arena-Hard	MT-Bench	
	LC (%)	WR (%)	WR (%)	GPT-4 Turbo	GPT-4	LC (%)	WR (%)	WR (%)	GPT-4 Turbo	GPT-4
SFT	8.4	6.2	1.3	4.8	6.3	17.1	14.7	12.6	6.2	7.5
RRHF [91]	11.6	10.2	5.8	5.4	6.7	25.3	24.8	18.1	6.5	7.6
SLiC-HF [96]	10.9	8.9	7.3	5.8	7.4	24.1	24.6	18.9	6.5	7.8
DPO [66]	15.1	12.5	10.4	5.9	7.3	26.8	24.9	16.3	6.3	7.6
IPO [6]	11.8	9.4	7.5	5.5	7.2	20.3	20.3	16.2	6.4	7.8
CPO [88]	9.8	8.9	6.9	5.4	6.8	23.8	28.8	22.6	6.3	7.5
KTO [29]	13.1	9.1	5.6	5.4	7.0	24.5	23.6	17.9	6.4	7.7
ORPO [42]	14.7	12.2	7.0	5.8	7.3	24.5	24.9	20.8	6.4	7.7
R-DPO [64]	17.4	12.8	8.0	5.9	7.4	27.3	24.5	16.1	6.2	7.5
SimPO	21.5	20.8	16.6	6.0	7.3	32.1	34.8	21.0	6.6	7.6
	Llama-3-Base (8B)				Llama-3-Instruct (8B)					
Method	AlpacaEval 2		Arena-Hard	MT-Bench		AlpacaEval 2		Arena-Hard	MT-Bench	
	LC (%)	WR (%)	WR (%)	GPT-4 Turbo	GPT-4	LC (%)	WR (%)	WR (%)	GPT-4 Turbo	GPT-4
SFT	6.2	4.6	3.3	5.2	6.6	26.0	25.3	22.3	6.9	8.1
RRHF [91]	12.1	10.1	6.3	5.8	7.0	31.3	28.4	26.5	6.7	7.9
SLiC-HF [96]	12.3	13.7	6.0	6.3	7.6	26.9	27.5	26.2	6.8	8.1
DPO [66]	18.2	15.5	15.9	6.5	7.7	40.3	37.9	32.6	7.0	8.0
IPO [6]	14.4	14.2	17.8	6.5	7.4	35.6	35.6	30.5	7.0	8.3
CPO [88]	10.8	8.1	5.8	6.0	7.4	28.9	32.2	28.8	7.0	8.0
KTO [29]	14.2	12.4	12.5	6.3	7.8	33.1	31.8	26.4	6.9	8.2
ORPO [42]	12.2	10.6	10.8	6.1	7.6	28.5	27.4	25.8	6.8	8.0
R-DPO [64]	17.6	14.4	17.2	6.6	7.5	41.1	37.8	33.1	7.0	8.0
SimPO	22.0	20.3	23.4	6.6	7.7	44.7	40.5	33.8	7.0	8.0

(c) Efficiency of DPO vs. SimPO.

Group Relative Policy Optimization (GRPO)

Deepseek uses it!

Recap: Reward Model in PPO

• Train a reward model (RM) from an annotated dataset

 $\mathbb{E}_{\hat{s} \sim p_{\theta}(s)}[R(\hat{s})]$

Group Relative Policy Optimization (GRPO)

- Consider group relative reward
 - Given x, sample multiple output y_1, y_2, \dots, y_G
 - Use reward model to get reward r_1, r_2, \ldots, r_G

$$A_i = \frac{r_i - mean(r_1, r_2, \dots, r_G)}{std(r_1, r_2, \dots, r_G)}$$

Lecture Plan

- Human Preference Optimization
 - Simple Preference Optimization
 - Group Relative Policy Optimization
- Text Similarity
 - Sentence-BERT
 - SimCSE, DIffCSE, DPR
- Retrieval-Augmented Generation

Text Similarity

Document Clustering

https://medium.com/@danielafrimi/text-clustering-using-nlp-techniques-c2e6b08b6e95

Information Retrieval

Recommendation Systems

Your recently viewed items and featured recommendations

Sponsored products related to this search What's this? ~

All-new Echo Show (2nd AmazonBasics Microwave, Gen) + Ring Video Doorbell Small, 0.7 Cu. Ft, 700W, 2- Charcoal Works with Alexa 1 offer from \$428.99 ★★★★☆ 1,375 \$59.99 **vprime**

Explore more from across the store

Yu-kai Chou

Actionable Gamification: The Model Thinker: What Beyond Points, Badges... You Need to Know to ... > Scott E. Page

00

Echo Look | Hands-Free

Assistant with Alexa-

includes Style Check to ...

Camera and Style

會會會會公公 413

Don't Make Me Think, Revisited: A Common... Steve Krug

Sonos Beam - Smart TV

Sound Bar with Amazon

Alexa Built-in - Black

★★★★☆☆ 474

\$399.00 vprime

Hooked: How to Build Habit-Forming Products > Nir Eyal

Microservices Patterns: With examples in Java > Chris Richardson

Echo Wall Clock - see

requires compatible Echo

timers at a glance -

★★☆☆☆ 1,231

\$29.99 <prime</pre>

device

Solving Product Design Exercises: Questions &... Artiom Dashinsky

Echo Spot Adjustable

Stand - Black

★★★★☆ 933

\$19.99 **vprime**

AHASTYLE Wall Mount Hanger Holder ABS for New Dot 3rd Generation Smart Home Speakers...

会会会会会 12 \$10.99 **vprime**

100 THINGS

0000000000

Susan Weinschenk

Page 1 of 3

Angel Statue Crafted Stand Holder for Amazon Echo Dot 3rd Generation, Aleax Smart...

会会会会会 57 \$25.99 <prime</pre>

Infinity Needs to Know About...

>

Page 1 of 6

> Jonathan Hickman 會會會會合 182

Semantic Quality Control

• Paraphrase generation

We will go hiking if tomorrow is a sunny day. If it is sunny tomorrow, we will go hiking.

- Style transfer
- Plagiarism detection

In-Context Example Selection

Semantic Textual Similarity Benchmark

A soccer player is kicking the soccer ball into the goal from a long way down the field.

A soccer player kicks the ball into 3.25 3.94 the goal. Earlier this month, RIM had said it Excluding legal fees and other expected to report second-quarter 1.2 0.5 charges it expected a loss of earnings of between 7 cents and 11 between 1 and 4 cents a share.

...

4.4

David Beckham Announces Retirement From Soccer.

cents a share.

...

David Beckham retires from football.

...

P

...

3.8

Pearson's Correlation Coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

- r = correlation coefficient
- x_i = values of the x-variable in a sample
- $ar{x}$ = mean of the values of the x-variable
- y_i = values of the y-variable in a sample
- $ar{y}$ = mean of the values of the y-variable

Spearman's Correlation Coefficient

- Pearson's correlation coefficient on rank
- Score
 - Human: [1.2, 3.4, 2.5, 0.7, 4.0]
 - Machine: [0.5, 3.3, 1.0, 1.2, 3.4]
- Rank
 - Human: [4, 2, 3, 5, 1]
 - Machine: [5, 2, 4, 3, 1]
- Assesses monotonic relationships
 - whether linear or not

A Simple Approach: Text Encoder + Cosine Similarity

Unfortunately, the performance is bad (why?)

A Simple Approach: Text Encoder + Cosine Similarity

Pre-trained BERT embeddings are more about lexical information

If it is sunny tomorrow, we will go hiking.

Good classification performance ≠ Good similarity

We will go hiking if tomorrow is a sunny day.

Sentence-BERT

- Consider SNLI dataset
 - Stanford Natural Language Inference

A boy is jumping on skateboard in the middle of a red bridge.
A boy is jumping on skateboard in the middle of a red bridge.
A boy is jumping on skateboard in the middle of a red bridge.
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.

Sentence-BERT

Contradiction Neutral Entailment

V

Sentence-BERT

Contradiction Neutral Entailment

Cross Entropy Loss

$$o = \operatorname{softmax}(W_t(u, v, |u - v|))$$

Triplet Loss

$$max(||s_a - s_p|| - ||s_a - s_n|| + \epsilon, 0)$$
Sentence-BERT: Performance

Model	STS12	STS13	STS14	STS15	STS16	STSb	SICK-R	Avg.
Avg. GloVe embeddings	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
Avg. BERT embeddings	38.78	57.98	57.98	63.15	61.06	46.35	58.40	54.81
BERT CLS-vector	20.16	30.01	20.09	36.88	38.08	16.50	42.63	29.19
InferSent - Glove	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT-NLI-base	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT-NLI-large	72.27	78.46	74.90	80.99	76.25	79.23	73.75	76.55
SRoBERTa-NLI-base	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa-NLI-large	74.53	77.00	73.18	81.85	76.82	79.10	74.29	76.68

SimCSE

• Simple Contrastive Learning of Sentence Embeddings

Contrastive Loss

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i, \mathbf{h}_j^+)/\tau}}$$

Generate positive example with masking

If it is sunny tomorrow, we will go hiking.

If [mask] *is sunny tomorrow, we* [mask] *go hiking.*

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Generate positive example with neuron masking

SimCSE: Performance

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
		Unsup	ervised mo	odels				
GloVe embeddings (avg.) [*]	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} ♡	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT-BERT _{base}	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
* SimCSE-BERT _{base}	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
RoBERTa _{base} (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTa _{base} -whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
DeCLUTR-RoBERTabase	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
* SimCSE-RoBERTa _{base}	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
$* \ SimCSE-RoBERTa_{\texttt{large}}$	72.86	83.99	75.62	84.77	81.80	81.98	71.26	78.9 0
		Supe	rvised mod	lels				
InferSent-GloVe*	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder*	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base} *	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT _{base} -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.00
CT-SBERT base	74.84	83.20	78.07	83.84	77.93	81.46	76.42	79.39
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SRoBERTa _{base} *	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa _{base} -whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.60
* SimCSE-RoBERTa _{base}	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.52
* SimCSE-RoBERTalarge	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.76

DiffCSE

DiffCSE: Performance

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
GloVe embeddings (avg.) [*]	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
$\operatorname{BERT}_{\operatorname{base}}$ (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
$\operatorname{BERT}_{\operatorname{base}}\operatorname{-flow}^{\diamondsuit}$	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
$\mathbf{BERT}_{\mathtt{base}}$ -whitening \diamond	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} ♡	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CMLM-BERT _{base} 🔶 (1TB data)	58.20	61.07	61.67	73.32	74.88	76.60	64.80	67.22
CT-BERT _{base} ♦	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
SG-OPT-BERT _{base} †	66.84	80.13	71.23	81.56	77.17	77.23	68.16	74.62
$SimCSE-BERT_{base}$	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
* SimCSE-BERT _{base} (reproduce)	70.82	82.24	73.25	81.38	77.06	77.24	71.16	76.16
* DiffCSE-BERT _{base}	72.28	84.43	76.47	83.90	80.54	80.59	71.23	78.49
RoBERTa _{base} (first-last avg.) \diamond	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
$RoBERTa_{base}$ -whitening \diamond	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
DeCLUTR-RoBERTa _{base} \diamond	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
SimCSE-RoBERTa _{base}	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
* SimCSE-RoBERTa _{base} (reproduce)	68.60	81.36	73.16	81.61	80.76	80.58	68.83	76.41
* DiffCSE-RoBERTa _{base}	70.05	83.43	75.49	82.81	82.12	82.38	71.19	78.21

Dense Passage Retrieval

Similarity between query and documents

Similarity between two sentences

We will go hiking if tomorrow is a sunny day. If it is sunny tomorrow, we will go hiking.

Lecture Plan

- Human Preference Optimization
 - Simple Preference Optimization
 - Group Relative Policy Optimization
- Text Similarity
 - Sentence-BERT
 - SimCSE, DIffCSE, DPR
- Retrieval-Augmented Generation

Retrieval models and language models are trained independently

- Training language models

- Training retrieval models

How to Train A Retriever?

Dense retrieval models: DPR (Karpukhin et al. 2020)

How to Train A Retriever?

• LLMs can't memorize all (long-tail) knowledge in their parameters

List 5 important papers authored by Geoffrey Hinton

Geoffrey Hinton is a renowned computer scientist ... Here are five important papers authored by him:

1. "Learning Internal Representations by Error Propagation" (with D. E. Rumelhart and R. J. Williams) - This paper, published in 1986, ...

2. "Deep Boltzmann Machines" (with R. Salakhutdinov) - Published in 2009, ..

4. "**Deep Learning**" (with Y. Bengio and A. Courville) - Published as a book in **2016**,...

5. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) - Published in 2017, this paper introduced the Transformer model,...

• LLMs' knowledge is easily outdated and hard to update

Who is the CEO of Twitter?

As of my **knowledge cutoff in September 2021**, the CEO of Twitter is **Jack Dorsey**....

• LLMs' output is challenging to interpret and verify

Generating text with citations

When did the US break away from England?

Retrieve H	Model output The US took the first step towards gaining independence from GB when it declared independence on July 2, 1776 (although the event is now commemorated on July 4, 1776, the date when the Declaration of Independence was officially adopted by Congress) [1][2]. The Treaty of Paris was later signed on September 3, 1783 formally separating the United States from the British Empire [3]

...

(Nakano et al. 2021; Menick et al., 2022; Gao et al., 2023)

• LLMs are shown to easily leak private training data

Extracting Training Data from Large Language Models

Nicholas Carlini1Florian Tramèr2Eric Wallace3Matthew Jagielski4Ariel Herbert-Voss5,6Katherine Lee1Adam Roberts1Tom Brown5Dawn Song3Úlfar Erlingsson7Alina Oprea4Colin Raffel11Google2Stanford3UC Berkeley4Northeastern University5OpenAI6Harvard7Apple

Category	Count
US and international news	109
Log files and error reports	79
License, terms of use, copyright notices	54
Lists of named items (games, countries, etc.)	54
Forum or Wiki entry	53
Valid URLs	50
Named individuals (non-news samples only)	46
Promotional content (products, subscriptions, etc.)	45
High entropy (UUIDs, base64 data)	35
Contact info (address, email, phone, twitter, etc.)	32
Code	31
Configuration files	30
Religious texts	25
Pseudonyms	15
Donald Trump tweets and quotes	12
Web forms (menu items, instructions, etc.)	11
Tech news	11
Lists of numbers (dates, sequences, etc.)	10

- Potentially leverage other modalities
 - Knowledge base
 - Tabular data
 - ...

Challenges with RAG

- Longer input text
 - Length generalization
 - KV cache
- The lost-in-the-middle problem

Retrieved Documents

Reasons for Positional Bias: Pre-Training Data

Introduction

First Main Point

Second Main Point

Third Main Point

Conclusion

The 5 Paragraph Essay Outline

Topic Sentence

Reasons for Positional Bias: Attention Mechanism

Output $q_i = W^Q x_i$ $k_i = W^K x_i$ $v_i = W^V x_i$ x_1

Output $q_i = W^Q x_i$ $k_i = W^K x_i$ $v_i = W^V x_i$ *x*₂ | ' $x_3 | \bigcirc$ x_1 x_4 \bigcirc

Position

Reasons for Positional Bias: Positional Encoding

Position

Combine All Together

Lecture Plan

- Human Preference Optimization
 - Simple Preference Optimization
 - Group Relative Policy Optimization
- Text Similarity
 - Sentence-BERT
 - SimCSE, DIffCSE, DPR
- Retrieval-Augmented Generation