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Invited Talk

• Speaker: Minhao Cheng, Assistant Professor at Pennsylvania State University

• Title: Beyond Generation: Enabling Detection and Traceability in Large 
Language Models through Watermarking

• Date: 3/31

• Online @ Zoom:

• https://tamu.zoom.us/my/khhuang?pwd=oAdWOKVOCGPApqDbJnVtktdW2AE6nb.1
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Invited Talk

Abstract: The remarkable success of generative models, particularly large language 
models (LLMs), in producing natural and high-quality content across various 
domains is undeniable. Yet, their widespread use brings forth critical challenges 
concerning copyright, privacy, and security. To address these risks, the ability to 
reliably detect and, critically, trace the flow and potential misuse of machine-
generated text is paramount for ensuring responsible LLM deployment. This talk will 
introduce various innovative techniques for embedding covert signals into 
generated content during its creation. These embedded signals will be 
algorithmically detectable and, significantly, will enable the tracing of the generated 
content even from brief token sequences, remaining imperceptible to human 
observers. Moreover, we will explore the specific hurdles in watermarking 
structured machine-generated data like code and present efficient strategies for 
integrating domain-specific knowledge into these watermarking frameworks to 
facilitate effective tracing.
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AI-Generated Text
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Is It Human-Written or Machine-Generated?
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Is It Human-Written or Machine-Generated?
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Is It Human-Written or Machine-Generated?
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Grover: Fake News Generator
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Comparison to Human-Written Articles
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How About Fake News Detection?

• Train a binary classifier

• Human-written news articles

• Machin-generated news articles
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How About Fake News Detection?
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Machine-Generated Text Detection

• Grover: supervised machine-generated text detection

• Require human-written and machine-generated examples

• Zero-shot machine-generated text detection

• No access to human-written and machine-generated examples
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The detector is model dependent!



Some Simple Detection Methods

• Perplexity / Log-Likelihood log 𝑝(𝑥) 
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Some Simple Detection Methods

• Rank 
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Some Simple Detection Methods

• Log-Rank 
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Perturbation Discrepancy Gap Hypothesis

• Text generator 𝑝𝜃
• Log probability of an example 𝑥 is log 𝑝𝜃 𝑥

• Slightly perturbed example ෤𝑥

• The difference log 𝑝𝜃 𝑥 − log𝑝𝜃 ෤𝑥  

• Should be relatively large when example 𝑥 is machine-generated

• Should be relatively small when example 𝑥 is human-written
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Perturbation Discrepancy Gap Hypothesis

• Perturbation function 𝑞 ⋅ |𝑥

• Perturbation discrepancy
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d 𝑥, 𝑝𝜃, 𝑞 = log𝑝𝜃 𝑥 − 𝔼 ෤𝑥~𝑞 ⋅ 𝑥 log 𝑝𝜃 𝑥



Perturbation Discrepancy Gap Hypothesis

• Perturbation function 𝑞 ⋅ |𝑥

• Samples from a mask-filling mode (e.g., T5)

• Perturbation discrepancy
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d 𝑥, 𝑝𝜃, 𝑞 = log 𝑝𝜃 𝑥 − 𝔼 ෤𝑥~𝑞 ⋅ 𝑥 log 𝑝𝜃 𝑥



Algorithm
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DetectGPT Results
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When Text Generator Is Not Accessible

• Use another generator to compute probability instead
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Issue of DetectGPT
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d 𝑥, 𝑝𝜃, 𝑞 = log𝑝𝜃 𝑥 − 𝔼 ෤𝑥~𝑞 ⋅ 𝑥 log 𝑝𝜃 𝑥

Time-consuming



Issue of DetectGPT

• This restaurant is extremely good, and I will give it a 5-star.

• This restaurant is impressively good, and I will rate it a 5-star.

• This restaurant is extremely great, and I will give it a 5-score.

• The restaurant is extremely good, and I would give it a 5-star.

• This restaurant is extremely good, and I will give it a 5-star.
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We need to compute the probability for every single perturbed examples



Issue of DetectGPT

• This restaurant is extremely good, and I will give it a 5-star.

• This restaurant is impressively good, and I will rate it a 5-star.

• This restaurant is extremely great, and I will give it a 5-score.

• The restaurant is extremely good, and I would give it a 5-star.

• This restaurant is extremely good, and I will give it a 5-star.
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We need to compute the probability for every single perturbed examples



Conditional Probability Function

• This restaurant is [?]

• This restaurant is extremely good, and I will give it a 5-star.

• This restaurant is impressively good, and I will rate it a 5-star.
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Conditional Probability Function

• This restaurant is extremely [?]

• This restaurant is extremely good, and I will give it a 5-star.

• This restaurant is extremely great, and I will give it a 5-score.
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Conditional Probability Function

• This restaurant is extremely good, and I will give it a 5-[?]

• This restaurant is extremely good, and I will give it a 5-star.

• This restaurant is extremely good, and I will give it a 5-score.
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Fast-DetectGPT vs. DetectGPT
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Conditional Probability Curvature
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Probability curvature proposed by DetectGPT

d 𝑥, 𝑝𝜃, 𝑞 = log𝑝𝜃 𝑥 − 𝔼 ෤𝑥~𝑞 ⋅ 𝑥 log 𝑝𝜃 𝑥



Algorithm
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• This restaurant is extremely good, and I will give it a 5-star.

• This [?]

• This restaurant [?]

• This restaurant is [?]

• …

White-box: sampled from text generator
Black-box: sampled from an alternative generator



Results for White-Box Setting
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Results for Black-Box Setting
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Speed Improvement
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Detectors Can Be Attacked

• Generate text by machines first

• Perturb machine-generated text

• Query-free word replacement

• Query-based word replacement

• Paraphrasing text
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Recap: Genetic Algorithm for Word Replacement
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Hello! Could you help me reserve a 
table at the “The Best” restaurant 
for tomorrow at 12pm? 

Hello! Could you help me book a 
table at the “The Best” restaurant 
for tomorrow at 12pm? 

Hello! Can you help me reserve 
a table at the “The Best” restaurant 
for tomorrow at 12pm? 

Hey! Could you help me reserve a 
table at the “The Best” restaurant 
for tomorrow at 12pm? 

Hello! Could you help me reserve a 
table for the “The Best” restaurant 
for tomorrow at 12pm? 

Perturb Text

0.32

0.18

0.07

0.11

0.47

0.27

0.10

0.16

Next Generation

Hello! Could you help me book a 
table at the “The Best” restaurant 
for tomorrow at 12pm? 

Hello! Can you help me reserve 
a table for the “The Best” restaurant 
for tomorrow at 12pm? 

Hello! Could you help me reserve a 
table at the “The Best” restaurant 
for tomorrow at 12pm? 

Hey! Could you help me reserve a 
table at the “The Best” restaurant 
for tomorrow at 12pm? 



Results
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Watermarking

• Post-detection can be hard

• Add watermark during training/generating

• Watermark should not affect too much to the 
generation quality

• Watermark cannot be too obvious

• Watermark verification needs to be viable

• Watermark cannot be removed easily
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Assumptions

• Add watermark when generating texts

• We have the access to the vocabulary of the model
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Watermarking Example
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How to decide green/red words?



Pre-Defined Green/Red List?

• Watermark should not affect too much to the generation quality (?)

• Watermark cannot be too obvious (x)

• Watermark verification needs to be viable (v)

• Watermark cannot be removed easily (v)
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Hash

Dynamically Define Red List
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Today is a sunny 

Random
Seed 

Green
List

Red
List

Random
Split 

Sample a word



Hash

Dynamically Define Red List
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Today is a sunny day 

Random
Seed 

Green
List

Red
List

Random
Split 

Sample a word



Text Generation with Red List

• The chance of a random text has a valid watermark

•
1

2

𝑇
 for a length 𝑇 text

• Watermark detection

• Statistic way: one proportion z-test

• If z > threshold → having watermark

• z > 4, the probability of a false positive is 3×10e-5
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Text Generation with Red List

• Generated texts can be not natural for certain cases

• College Station

• Los Angeles

48



Dynamically Define Soft Red List
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Hash

Today is a sunny 

Random
Seed 

Green
List

Red
List

Random
Split 

Sample a word



Text Generation with Soft Red List
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Text Generation with Soft Red List
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Private Watermarking

52

Hash

Today is a sunny 

Random
Seed 

Green
List

Red
List

Random
Split 

Sample a word

Replace by 
secret key



Text Generation Quality
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Text Generation Quality
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Watermark Detection Results
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How About Attacks?
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• Generate text by machines first

• Perturb machine-generated text

• Query-free word replacement

• Query-based word replacement

• Paraphrasing text



Attacking Results
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Locality-Sensitive Hashing (LSH)
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Sentence Encoder
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• Semantic encoder robust to paraphrasing

• SentenceBERT, SimCSE, etc.



Partition with LSH
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• Each dot is a potential next sentence sampled 
from LM

• LSH partitions the semantic space through 
random hyperplanes

• Divide the semantic space into valid and 
blocked regions by hashing on the previous 
sentence



Generation Overview
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Paraphrase Attack
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Consider Margin for Robustness
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• Sentence encoder is not perfect

• Only accept sentences with distance larger 
than a margin



Results
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More Study on Attacks for Token-Level Watermark
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Results
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