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Invited Talk

• Speaker: Pan Lu, Postdoctoral Scholar at Stanford University

• Title: Advancing Complex Reasoning with Language Models and Agentic 
Systems

• Date: 4/16

• Online @ Zoom:

• https://tamu.zoom.us/my/khhuang?pwd=oAdWOKVOCGPApqDbJnVtktdW2AE6nb.1
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https://lupantech.github.io/
https://tamu.zoom.us/my/khhuang?pwd=oAdWOKVOCGPApqDbJnVtktdW2AE6nb.1


Invited Talk

Abstract: Complex reasoning is fundamental to human intelligence and plays a 
crucial role in advancing education, science, and technology. This talk explores the 
development of language model systems that exhibit robust mathematical 
reasoning and facilitate scientific reasoning, marking a significant step toward 
general artificial intelligence. We introduce novel multi-modal and knowledge-
intensive benchmarks designed to assess the reasoning capabilities of large 
language models (LLMs) and vision-language models (VLMs) in real-world scenarios, 
including those involving visual data, tabular information, and scientific applications. 
The talk highlights recent advancements in mathematical reasoning within visual 
contexts and addresses key unresolved challenges. Additionally, we present cutting-
edge retrieval and tool-augmented algorithms that significantly enhance LLM 
performance in mathematical reasoning tasks. Finally, we explore how agentic 
systems, leveraging test-time optimization and external tools, can further advance 
mathematical reasoning and scientific discovery.
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Quiz 3

• Date: 4/14

• 15 minutes before the end of the lecture

• 5 questions focusing on high-level concepts

• Pay attention to how methods work and the 
difference between them
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Recap: Autoregressive Language Models
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𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 = 𝑃 𝑤1 𝑃 𝑤2, 𝑤3, … , 𝑤𝑙|𝑤1

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1) 𝑤3, … , 𝑤𝑙|𝑤1, 𝑤2

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1, 𝑤2) 𝑤4, … , 𝑤𝑙|𝑤1, 𝑤2, 𝑤3

=ෑ

𝑖=1

𝑙

𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑃(She likes to go hiking) = 𝑃(She) ⋅ 𝑃(likes|She) ⋅ 𝑃(to|She likes)

⋅ 𝑃(go|She likes to) ⋅ 𝑃(hiking|She likes to go)



Recap: Autoregressive Language Models
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Prediction as a basis for skilled reading: Insights from modern language models



Non-Autoregressive Generation

• Can we generate text in ways other than word by word?

• Other order

• Parallel decoding

• Why?

• Faster decoding

6



Non-Autoregressive Generation

• Can we generate text in ways other than word by word?

• Other order

• Parallel decoding

• Why?

• Faster decoding

• More similar to human writing (revision)
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There is a bird on the tree.

There is a red bird on the green tree.

There is a red bird with a big beak on the green tree.



Document Editing
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https://www.econtentpro.com/copyediting/samples



Challenges

• How to add words in the middle?

• Parallel decoding → fluency issue
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Machine Translation with Seq2Seq
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Semi-Autoregressive Decoding

• Autoregressive decoding

• Semi-autoregressive decoding
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Semi-Autoregressive  Transformer
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Mask Modification
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Machine Translation Performance
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Decoding Speed
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Fully Non-Autoregressive Decoding

• Autoregressive decoding

• Fully non-autoregressive decoding

19



Motivation (Word Alignment)
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Motivation (Word Alignment)
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Motivation (Word Alignment)
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Fertility Predictor
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Fertility Predictor
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Decode with Latent Variables (A More General Version)
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Results
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Decode with Latent Variables
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Decode with Autoregressive Latent Variables

29



How to Decide Latent Variables?
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Reconstruction from latent variables 

Discrete values
(Information Bottleneck)



Learning Mapping Between Inputs and Latent Variables
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Predict Output Length
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A separate classifier to predict the output length



Results
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Consider Syntactic Information for Latent Variables
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Syntactic Information: Constituency Parse Trees
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Consider Syntactic Information for Latent Variables
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DT1  JJ1  NN1  VBD2  NP2  



Syntactically Supervised Transformer (SynST)
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Results
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Fully Non-Autoregressive Decoding

• Autoregressive decoding

• Fully non-autoregressive decoding
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How about iterative refinement?



Mask-Predict: Iterative Refinement

• Input: Der Abzug der franzsischen Kampftruppen wurde am 20. November 
abgeschlossen

• Step 1: Predict the output length based on the input (12)
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Mask-Predict: Iterative Refinement

• Step 2: Iterative non-autoregressive refinement
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[Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask]

The departure departure the French combat completed completed on 20 November

0.9 0.2 0.3 0.1 0.4 0.2 0.2 0.2 0.1 0.6 0.7

The [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] 20 November

departure of French combat troops troops completed on

0.2 0.9 0.8 0.7 0.8 0.1 0.2 0.9

The [Mask] of French combat troops [Mask] [Mask] on 20 November

withdrawal was completed

0.9 0.8 0.9

The withdrawal of French combat troops was completed on 20 November



Results
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Image Diffusion
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Gradually add noise to image

Learn to denoise



Image Diffusion Examples
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Text Diffusion

48



Adding Control Capability
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Adding Control Capability
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Insertion Operation

• Generate text by inserting words
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<slot 0> This <slot 1> is <slot 2> a <slot 3> boring <slot 4> book <slot 5>

This is a book

This is a boring book

<slot 0> This <slot 1> is <slot 2> a <slot 3> book <slot 4>

Insert “boring” at <slot 3>

This is a very boring book

Insert “very” at <slot 3>



Example
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Example (Parallel Version)
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Advantages

• More similar to human writing

• Don’t need to predict the output length in advance

• Dynamically decide when to stop
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There is a bird on the tree.

There is a red bird on the green tree.

There is a red bird with a big beak on the green tree.



Insertion Transformer
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This is a book

<start> This is a book <end>

𝐸0 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

<slot 0> This <slot 1> is <slot 2> a <slot 3> book <slot 4>

Transformer
Output

Slot Representation



Insertion Transformer
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This is a book

<start> This is a book <end>

𝐸0 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

<slot 0> This <slot 1> is <slot 2> a <slot 3> book <slot 4>

Transformer
Output

Slot Representation



Insertion Transformer
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This is a book

<start> This is a book <end>

𝐸0 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

<slot 0> This <slot 1> is <slot 2> a <slot 3> book <slot 4>

Transformer
Output

Slot Representation

Predict words based on slot 
representations

𝑃 = 𝑊⊤concat(𝐸𝑖, 𝐸𝑖+1)



Training Loss
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A B C D E F G H I J K L M N O

<S0> A <S1> C <S2> D <S3> I <S4> M <S5>

𝐿𝑜𝑠𝑠(0) = − log 𝑝(𝐸𝑂𝑆)

𝐿𝑜𝑠𝑠(1) = − log 𝑝(𝐵)

𝐿𝑜𝑠𝑠(2) = − log 𝑝(𝐸𝑂𝑆)

𝐿𝑜𝑠𝑠(3) = Avg − log 𝑝 𝐸 ,− log 𝑝 𝐹 , − log 𝑝 𝐺 ,− log 𝑝 𝐻

𝐿𝑜𝑠𝑠(4) = Avg − log 𝑝 𝐽 , − log 𝑝 𝐾 ,− log 𝑝 𝐿

𝐿𝑜𝑠𝑠(5) = Avg − log 𝑝 𝑁 ,− log 𝑝 𝑂



Training Loss (Balanced Binary Tree)
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A B C D E F G H I J K L M N O

<S0> A <S1> C <S2> D <S3> I <S4> M <S5>

𝐿𝑜𝑠𝑠(0) = − log 𝑝(𝐸𝑂𝑆)

𝐿𝑜𝑠𝑠(1) = − log 𝑝(𝐵)

𝐿𝑜𝑠𝑠(2) = − log 𝑝(𝐸𝑂𝑆)

𝐿𝑜𝑠𝑠(3) = Avg − log 𝑝 𝐸 ,− log 𝑝 𝐹 , − log 𝑝 𝐺 ,− log 𝑝 𝐻

𝐿𝑜𝑠𝑠(4) = Avg − log 𝑝 𝐽 , − log 𝑝 𝐾 ,− log 𝑝 𝐿

𝐿𝑜𝑠𝑠(5) = Avg − log 𝑝 𝑁 ,− log 𝑝 𝑂



Training Loss (Balanced Binary Tree)
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Results
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Examples
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Examples
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Levenshtein Transformer

• Extension of Insertion Transformer

• Three operations

• Insert placeholders

• Fill-in tokens

• Delete tokens

66



67



Inefficient Position Encoding for Insertion Operation
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ate
0

ate together
  0         1    

friends ate together
  0           1         2   three friends ate together

    0         1        2          3   
three friends ate lunch together
    0         1        2       3           4   



Modified Relative Positional Encoding
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Results
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