
CSCE 638, Spring 2026 First-Name Last-Name, 000000000

Assignment 1

RELEASE DATE: 01/28/2026

DUE DATE: 02/10/2026 11:59pm on Gradescope

LATEX Template: https://www.overleaf.com/read/tsrvwjgzwjrw#942964

Name: First-Name Last-Name UIN: 000000000

This assignment consists of two parts: a writing section and a programming section. For the writing
section, please use the provided LATEX template to prepare your solutions and remember to fill in
your name and UIN. For the programming section, please follow the instructions carefully.

Discussions with others on course materials and assignment solutions are encouraged, and the use
of AI tools as assistance is permitted. However, you must ensure that the final solutions are
written in your own words. It is your responsibility to avoid excessive similarity to others’
work. Additionally, please clearly indicate any parts where AI tools were used as assistance.

If you have any question, please send an email to csce638-ta-26s@list.tamu.edu

1 Deriving Derivatives [20pts]

1.1 Sigmoid Function [6pts]

In the class, we introduced the sigmoid function

σ(t) =
1

1 + e−t

(a) [3pts] Please show that the derivative of σ(t) can be calculated in the following way

σ(t)′ = σ(t) · (1− σ(t))

Solution:

Please enter your solution here.

(b) [3pts] Please show that
(1− σ(t))′ = −σ(t) · (1− σ(t))

Solution:

Please enter your solution here.

1.2 Multiclass Logistic Regression [7pts]

In the class, we introduced the multiclass logistic regression as follows. Given an example (x, y),

zc = wc · x+ bc

1 of 11

https://www.gradescope.com/courses/1210076
https://www.overleaf.com/read/tsrvwjgzwjrw#942964
csce638-ta-26s @list.tamu.edu

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

P (y = c|x) = softmax(zc) =
exp(wc · x+ bc)∑K
i=1 exp(wi · x+ bi)

where

• K is the number of classes

• x is the input feature vector

• y is the ground truth label for x

• w is the weight parameter with wc is the linear weight vector for class c

The cross entropy loss for classification is

L(w) = −
K∑
i=1

yi logP (y = i|x)

where yi = 1 if y belongs to class i, otherwise yi = 0.

(a) [6pts] Show that

∂L(w)

∂wc
=

{
(P (y = c|x)− 1) · x If y belongs to class c

P (y = c|x) · x If y does not belong to class c

Solution:

Please enter your solution here.

(b) [1pts] Based on (a), explain why the gradient encourages wc to make more accurate predictions.

Solution:

Please enter your solution here.

1.3 Context Word Vectors in Skip-Gram [7pts]

In the class, we introduced the idea of using skip-gram to learn word vectors. Specifically, we have
two sets of vectors uw and vw

uw : the vector when w is the center word

vw : the vector when w is the context word

Given a center word x and a context word c, the probability of predict c based on x is defined as

P (c|x) = exp(ux · vc)∑
k∈V exp(ux · vk)

where V is the vocabulary set. The objective function of skip-gram is minimizing negative log
likelihood

y = − logP (c|x) = − log

(
exp(ux · vc)∑
k∈V exp(ux · vk)

)

2 of 11

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

(a) [6pts] For each word k in V, show that

∂y

∂vk
=

{
(P (k|x)− 1) · ux If k = c

P (k|x) · ux If k ̸= c

Solution:

Please enter your solution here.

(b) [1pts] Based on (a), explain why the gradient encourages vk to capture more accurate word
similarity.

Solution:

Please enter your solution here.

2 N-Gram Features and Linear Classifier [15pts]

Consider the following training examples for a binary sentiment classification.

Label Sentence

+ <s> I like apples </s>

− <s> I hate apples </s>

− <s> I do not like apples </s>

+ <s> I do not hate apples </s>

− <s> grapes are bad </s>

where <s> and </s> are special tokens that represent the start and the end of a sentence, respec-
tively.

(a) [2pts] Let’s consider bag-of-words (unigrams) to construct vector representations for sentences.
Each sentence can be represented by a 11-dimensional binary vector x, where the dimensions in
the vector correspond to the following order:

I, like, hate, apples, grapes, do, not, are, bad, <s>, </s>.

Please list the vectors for all training examples above.

Solution:

Please enter your solution here.

(b) [3pts] Let’s consider logistic regression to classify sentences with the following probability

P (y = +|x) = sigmoid(w · x+ b)

3 of 11

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

and the following prediction function

y =

{
+ If P (y = +|x) ≥ 0.5

− If P (y = +|x) < 0.5

Is it possible to construct a set of parameters (w, b) that can make correct predictions for all training
examples? If yes, please construct the parameters (w, b) and calculate the probability P (y = +|x)
for all training examples. If no, please explain the reason.

Solution:

Please enter your solution here.

(c) [2pts] Let’s consider bag-of-words (unigrams) and bigrams to construct vector representations
for sentences. Each sentence can be represented by a 25-dimensional binary vector x, where the
dimensions in the vector correspond to the following order:

I, like, hate, apples, grapes, do, not, are, bad, <s>, </s>, <s> I, I like, I hate, like apples,
hate apples, apples </s>, I do, do not, not like, not hate, <s> grapes, grapes are, are
bad, bad </s>.

Please list the vectors for all training examples above.

Solution:

Please enter your solution here.

(d) [3pts] Similar to (b), let’s consider logistic regression to classify sentences. Is it possible to
construct a set of parameters (w, b) that can make correct predictions for all training examples? If
yes, please construct the parameters (w, b) and calculate the probability P (y = +|x) for all training
examples. If no, please explain the reason.

Solution:

Please enter your solution here.

(e) [2pts] Following (d), let’s consider the following two testing examples.

Label Sentence

+ <s> I like grapes </s>

− <s> I hate grapes </s>

Is it possible to construct a set of parameters (w, b) that can make correct predictions for all training
examples, while making correct predictions for all testing examples at the same time? If yes, please
construct the parameters (w, b) and calculate the probability P (y = +|x) for all testing examples.
If no, please explain the reason.

Solution:

Please enter your solution here.

(f) [3pts] Similar to (d), is it possible to construct a set of parameters (w, b) that can make correct

4 of 11

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

predictions for all training examples, while making incorrect predictions for all testing examples
at the same time? If yes, please construct the parameters (w, b) and calculate the probability
P (y = +|x) for all testing examples. If no, please explain the reason.

Solution:

Please enter your solution here.

3 Language Modeling [16pts]

Consider the following corpus of text

<s> I like raspberries </s>

<s> You like all berries </s>

<s> I hate sour fruits </s>

<s> You like all sweet fruits </s>

<s> I like chocolate covered raspberries </s>

where <s> and </s> are special tokens that represent the start and the end of a sentence, respec-
tively. In the following questions, consider splitting sentences into tokens by whitespace only.

3.1 Unigram Language Model [8pts]

(a) [4pts] Calculate the unigram probabilities for this corpus, including the detailed steps. The
results should be displayed in a table format. You can learn some basics about Tables here.

Example table format:

Unigram Probability

P (<s>) ...
P (I) ...
... ...

Solution:

Please enter your solution here.

(b) [2pts] Using the estimate from (a), calculate the probabilities for the following sentences.

<s> You like all berries </s>

<s> You hate sour fruits </s>

Solution:

Please enter your solution here.

(c) [2pts] Using the estimate from (a), calculate the perplexity for the following corpus.

<s> I like all sweet fruits </s>

<s> You like raspberries </s>

5 of 11

https://www.overleaf.com/learn/latex/Tables

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

Solution:

Please enter your solution here.

3.2 Bigram Language Model [8pts]

(a) [4pts] Consider the same corpus at the beginning. Calculate the all non-zero bigram probabilities
for this corpus, including the detailed steps. The results should be displayed in a table format.

Example table format:

Unigram Probability

P (I|<s>) ...
P (like|I) ...

... ...

Solution:

Please enter your solution here.

(b) [2pts] Using the estimate from (a), calculate the probabilities for the following sentences.

<s> You like all berries </s>

<s> You hate sour fruits </s>

Solution:

Please enter your solution here.

(c) [2pts] Using the estimate from (a), calculate the perplexity for the following corpus.

<s> I like all sweet fruits </s>

<s> You like raspberries </s>

Solution:

Please enter your solution here.

4 Word Embeddings (Programming) [18pts]

CSCE638-S26-HW1-4.ipynb: Colab Notebook

glove.6B.50d.txt: Data

Please open the above Colab Notebook with Google Colab. Remember to use your @tamu.edu
email to access the Colab Notebook. Copy the Colab Notebook to your Google drive and
make the changes. The notebook has marked blocks where you need to code:

========= TODO : START =========

6 of 11

https://colab.research.google.com/drive/1s2LeS4IvGs_aB4pJ9utNurlEtuV71NEh?usp=sharing
https://drive.google.com/file/d/1S8TbyL3qcp4HBZNHnWDHtxiW_IZiY2yW/view?usp=sharing
https://colab.research.google.com/

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

...

========= TODO : END =========

Please copy and paste your code (between TODO:START and TODO:END) as part of the solu-
tion. You can use the Minted package for code highlighting. Here is one example:

def hello_world():

print("Hello World!")

4.1 Loading GloVe Embeddings [4pts]

Please follow the instructions and implement the related parts to load the GloVe word embeddings.
Each word should map to a 50-dimensional vector. Copy and paste your code (between TODO:START

and TODO:END) as well as the output of test_glove_loading.

Solution:

Please enter your solution here.

4.2 Compute Word Similarity [4pts]

Let’s consider the cosine similarity. Given two vectors x and y, the cosine similarity is

x · y
∥x∥∥y∥

Please follow the instructions and implement the related parts to compute word similarity. Copy and
paste your code (between TODO:START and TODO:END) as well as the output of test_word_similarity.

Please also report your findings.

Solution:

Please enter your solution here.

4.3 Word Analogy [5pts]

Let’s study the following word analogy test.

word A : word B ≈ word C : ?

If we get the word vectors wa,wb,wc corresponding to word A, word B, and word C, it is equivalent
to solve the following optimization problem

v∗ = arg max
v∈V,v ̸=word C

CosineSimilarity(wv,wb −wa +wc)

Please follow the instructions and implement the related parts to study word analogy. Copy and
paste your code (between TODO:START and TODO:END) as well as the output of test_word_analogy.

7 of 11

https://www.overleaf.com/learn/latex/Code_Highlighting_with_minted

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

Please also report your findings.

Solution:

Please enter your solution here.

4.4 Visualizing Word Embeddings [5pts]

To visualize word embeddings, we first consider principal component analysis (PCA) to reduce the
dimension of word vectors from 50 to 2. Then, we use matplotlib to generate the visualization.
You can learn how to compute PCA with sklearn here.

Please follow the instructions and implement the related parts to study word analogy. Copy and
paste your code (between TODO:START and TODO:END) as well as the output of visualize.

Please also report your findings.

Solution:

Please enter your solution here.

5 Text Classification with Neural Networks (Programming) [31pts]

We will follow a step-by-step pipeline to construct a simple deep neural network classifier based on
bag-of-words embeddings. We will consider PyTorch, a popular python framework that is widely
used for building and training neural networks. You can learn some basics about PyTorch here.

CSCE638-S25-HW1-5.ipynb: Colab Notebook

glove.6B.50d.txt: Data

HW1-5_train.json: Data

HW1-5_valid.json: Data

HW1-5_test.json: Data

Please open the above Colab Notebook with Google Colab. Remember to use your @tamu.edu
email to access the Colab Notebook. Copy the Colab Notebook to your Google drive and
make the changes. The notebook has marked blocks where you need to code:

========= TODO : START =========

...

========= TODO : END =========

Please copy and paste your code (between TODO:START and TODO:END) as part of the solu-
tion. You can use the Minted package for code highlighting. Here is one example:

def hello_world():

print("Hello World!")

8 of 11

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
https://colab.research.google.com/drive/1u88uPNURiDtwWhC8XbAxMDaPT7hxu_Li?usp=sharing
https://drive.google.com/file/d/1S8TbyL3qcp4HBZNHnWDHtxiW_IZiY2yW/view?usp=sharing
https://drive.google.com/file/d/16jOGmqV7Xl_UBgAZqml7qLX0cMElodzt/view?usp=sharing
https://drive.google.com/file/d/1nK5QVApWodFcJz7F0rkrf53bJbefukLy/view?usp=sharing
https://drive.google.com/file/d/1sHs1ejZOgg7ydCn6ZWQtPxqw2biNR-1J/view?usp=sharing
https://colab.research.google.com/
https://www.overleaf.com/learn/latex/Code_Highlighting_with_minted

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

5.1 Loading GloVe Embeddings [1pts]

Similar to problem 4.1. Please follow the instructions and implement the related parts to load the
GloVe embeddings. Copy and paste your code (between TODO:START and TODO:END) as well as the
output of test_glove_loading.

Solution:

Please enter your solution here.

5.2 Loading Data and Tokenization [4pts]

Please download train.json, valid.json, and test.json from the links above and set the correct
path. We consider a subset of AG News dataset. It’s a dataset for 4-class classification. The input
will be a short description of a news article, and the output will be 0/1/2/3, which corresponds to
4 different topics World/Sports/Business/Tech.

We are going to use the NLTK package for tokenization. You can learn more about how to use the
word_tokenize function here.

Please follow the instructions and implement the related parts to load and tokenize data. Copy and
paste your code (between TODO:START and TODO:END) as well as the output of test_tokenization.

Solution:

Please enter your solution here.

5.3 Preparing Bag-of-Words Vectors [4pts]

We consider bag-of-words embeddings as the feature vector. We use the average GloVe embeddings
of all tokenized words, and ignore any word that is not in the GloVe vocabulary. That means each
example will map to a 50-dimensional vector.

Please follow the instructions and implement the related parts to prepare bag-of-words vectors.
Copy and paste your code (between TODO:START and TODO:END) as well as the output of test_bow_vector.

Solution:

Please enter your solution here.

5.4 Preparing Dataset and DataLoader [2pts]

We will use torch.utils.data.Dataset and torch.utils.data.DataLoader to compile the data
for training. You can learn more about them here.

Please follow the instructions and implement the related parts to prepare Dataset and DataLoader.
Copy and paste your code (between TODO:START and TODO:END).

9 of 11

https://huggingface.co/datasets/sh0416/ag_news
https://www.nltk.org/
https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

Solution:

Please enter your solution here.

5.5 Preparing Model [4pts]

We will consider a two-layer neural network

yc = Softmax(W⊤
2 φ(W

⊤
1 x))

where W1 is a 50× 100 wight matrix, W2 is a 100× 4 wight matrix, and φ is the ReLU activation
function. You can learn how to use torch.nn.Linear and other PyTorch function to build a model
here.

Please follow the instructions and implement the related parts to build the model. Copy and paste
your code (between TODO:START and TODO:END) as well as the output of test_model.

Solution:

Please enter your solution here.

5.6 Evaluating Accuracy [4pts]

Please follow the instructions and implement the related parts to evaluate the model accuracy for
validation set. You can check the test_loop in this tutorial for reference. Copy and paste your
code (between TODO:START and TODO:END) as well as the output of test_evaluate_acc. Since we
have not started the training yet, it is possible if the accuracy is low now.

Solution:

Please enter your solution here.

5.7 Training [6pts]

We are going to use the Adam optimizer to train the model with learning rate 0.01. We will set
the loss function to the CrossEntropyLoss. During training, we will evaluate the current model’s
performance on the validation set in each iteration, and save the best checkpoint for future testing.

Please follow the instructions and implement the related parts to train the model. You can check
the train_loop in this tutorial for reference. Copy and paste your code (between TODO:START

and TODO:END) as well as the cell output. If you implement everything correctly, after running the
notebook cell, you should get outputs similar to the following (the numbers can be different).

Epoch [1/100], Loss: 1.3878025674819947, Valid Acc: 0.295

Epoch [2/100], Loss: 1.3806762647628785, Valid Acc: 0.365

Epoch [3/100], Loss: 1.3604189085960388, Valid Acc: 0.3525

Epoch [4/100], Loss: 1.3338648283481598, Valid Acc: 0.43

10 of 11

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html

CSCE 638, Spring 2026 First-Name Last-Name, 000000000

Epoch [5/100], Loss: 1.3066564297676087, Valid Acc: 0.58

Epoch [6/100], Loss: 1.286200487613678, Valid Acc: 0.545

...

Solution:

Please enter your solution here.

5.8 Testing [6pts]

The last step is load the best check point and evaluate the testing performance. You can learn
more about saving and loading PyTorch models here.

Please follow the instructions and implement the related parts to test performance. Copy and paste
your code (between TODO:START and TODO:END) as well as the final accuracy on the test set.

During grading, we will replace the test file with another hidden file to test the perfor-
mance of your model. Please make sure that there won’t be any runtime errors.

Solution:

Please enter your solution here.

Submission Instructions

You have to upload two files to Gradescope:

• report.pdf: The .pdf file generated by the LATEX template. Please remember to annotate
the correct page for each question on Gradescope. Failure to do so may result in a grade
penalty.

• programming.zip: A .zip file contains the following:

– problem4.py: Please export the Colab Notebook to a .py file by clicking “File” →
“Download” → “Download .py”

– problem4.ipynb: Please execute and export the Colab Notebook to a .ipynb file by
clicking “File” → “Download” → “Download .ipynb”

– problem5.py: Please export the Colab Notebook to a .py file by clicking “File” →
“Download” → “Download .py”

– problem5.ipynb: Please execute and export the Colab Notebook to a .ipynb file by
clicking “File” → “Download” → “Download .ipynb”

11 of 11

https://pytorch.org/tutorials/beginner/basics/saveloadrun_tutorial.html

	Deriving Derivatives [20pts]
	Sigmoid Function [6pts]
	Multiclass Logistic Regression [7pts]
	Context Word Vectors in Skip-Gram [7pts]

	N-Gram Features and Linear Classifier [15pts]
	Language Modeling [16pts]
	Unigram Language Model [8pts]
	Bigram Language Model [8pts]

	Word Embeddings (Programming) [18pts]
	Loading GloVe Embeddings [4pts]
	Compute Word Similarity [4pts]
	Word Analogy [5pts]
	Visualizing Word Embeddings [5pts]

	Text Classification with Neural Networks (Programming) [31pts]
	Loading GloVe Embeddings [1pts]
	Loading Data and Tokenization [4pts]
	Preparing Bag-of-Words Vectors [4pts]
	Preparing Dataset and DataLoader [2pts]
	Preparing Model [4pts]
	Evaluating Accuracy [4pts]
	Training [6pts]
	Testing [6pts]

