
CSCE 638 Natural Language Processing
Foundation and Techniques

Spring 2026

Lecture 3: Word Representations

(Some slides adapted from Chris Manning, Dan Jurafsky, Richard Socher, Karthik Narasimhan, and Danqi Chen)

Kuan-Hao Huang



Course Staff

Kuan-Hao Huang

• Email: khhuang@tamu.edu

• Office Hour: Wed. 2pm – 3pm

• Office: PETR 219

1

Instructor

Rusali Saha

• Email: rs0921@tamu.edu

• Office Hour: Tue. 11am – 12pm

• Office: PETR 330

TA

For questions, send emails to csce638-ta-26s@lists.tamu.edu with “[CSCE 638] Subject …”

mailto:khhuang@tamu.edu
mailto:rs0921@tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu


Assignment 0
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Lecture Plan

• Counting-Based Word Vectors

• Learning-Based Word Vectors

• Evaluation for Word Vectors
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification
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• Teach the model how to understand example 𝑥



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification
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• Teach the model how to make prediction 𝑦



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: Bag-of-Words and N-Grams
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• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words and n-grams
We will discuss “learnable” 

features today!



Bag-of-Words and N-Gram Features
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Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 …  0 0 0 1 …  1 1]𝐱 = [0 1 …  0 1 1 0 …  0 1]

BoW (unigram) features Bigram features

Encode a text to one vector

We can consider trigrams, 4-grams, …



Word-Level Understanding
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https://www.merriam-webster.com/thesaurus/great



Words as Vectors
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Bob     likes     Alice     very     much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
𝑊 =

 

Advantages?

Use one vector to represent each word 

Text = A list of vectors



How to Represent Words?

A simple solution: discrete symbols
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Vector dimension = number of words in vocabulary (e.g., 500,000+)

Words can be represented by one-hot vectors:

good =   [0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0]

great =   [0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0]

bad =   [0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0]

One 1, the rest 0s

good bad great

Any disadvantages?



Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “good restaurant”, we would 
like to match documents containing “great restaurant”
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But

good =   [0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0]

great =   [0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0]

These two vectors are orthogonal

There is no way to encode similarity of words in these vectors!

Any solutions?



Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms
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from nltk.corpus import wordnet as wn
poses = { 'n’ : 'noun', 'v’ : 'verb', 's’ : 'adj (s)', 'a’ : 'adj', 'r’ : 'adv'}
for synset in wn.synsets(“bad”):
    print("{}: {}".format(poses[synset.pos()],
                  ", ".join([l.name() for l in synset.lemmas()])))

noun: bad, badness
adj: bad
adj (s): bad, big
adj (s): bad, tough
adj (s): bad, spoiled, spoilt
adj: regretful, sorry, bad
adj (s): bad, uncollectible
…
adj (s): bad, risky, high-risk, speculative
adj (s): bad, unfit, unsound
adj (s): bad, forged
adj (s): bad, defective
adv: badly, bad



Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms
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good =   [0  1  0  1  0  0  0  0  0  0  0  0  0  1  0  0]

great =   [0  0  0  1  0  0  0  0  0  0  0  0  0  1  0  0]

bad =   [0  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0]

good bad great

welfare sorry

Similarity(good, great) > Similarity(good, bad)cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Any disadvantages?



Problems with Resources Like WordNet

• Subjective

• A useful resource but missing nuance

• e.g., “sorry” is listed as a synonym for “bad”

• This is only correct in some contexts

• Requires human labor to create and adapt
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Representing Words by Their Contexts
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Distributional hypothesis: A word’s meaning is given by the words that 
frequently appear close-by

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking

Slide adapted from Chris Manning



Distributional Hypothesis: Example
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C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: I bought ___ yesterday.

wine

C1 C2 C3 C4

1 1 1 1

juice 1 1 0 1

loud 0 0 0 0

apples 0 1 0 1

choices 0 1 0 0

motor-oil 1 0 0 1

A word’s meaning is given by the words that frequently appear close-by

Slide adapted from Danqi Chen



Word Vectors from Word-Word Co-Occurrence Matrix

• Main idea: Similar contexts → Similar word co-occurrence

• Collect a bunch of texts and compute co-occurrence matrix

• Words can be represented by row vectors
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shark computer data eat result sugar

apple 0 0 0 8 0 2

bread 0 0 0 9 0 1

digital 0 6 5 0 2 0

information 0 4 10 0 2 0

Word Vector High cosine 
similarity!

cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Most entries are 0s → sparse vectors
Low cosine 
similarity!



Issues with Word-Word Co-Occurrence Matrix

• Using raw frequency counts is not always very good (why?)

• Some frequent words (e.g., the, it, or they) can have large counts
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shark computer data eat result sugar the it

apple 0 0 0 8 0 2 104 67

bread 0 0 0 9 0 1 95 76

digital 0 6 5 0 2 0 101 65

Similarity(apple, bread) ≈ 0.994710

Similarity(apple, digital) ≈ 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts



Pointwise Mutual Information
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Pointwise Mutual Information (PMI)

Do events 𝑥 and 𝑦 co-occur more or less than if they were independent?

PMI 𝑥, 𝑦 = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI = 0 → 𝑥 and 𝑦 occur independently → co-occurrence is as expected

• PMI > 0 → 𝑥 and 𝑦 co-occur more often than expected

• PMI < 0 → 𝑥 and 𝑦 co-occur less often than expected



Co-Occurrence Matrix with Positive PMI
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PPMI 𝑥, 𝑦 = max log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
, 0

Positive Pointwise Mutual Information (PPMI)

shark computer data eat result sugar the it

apple 0 0 0 1.80 0 0.35 0.08 0

bread 0 0 0 1.54 0 0.29 0 0.14

digital 0 1.47 1.22 0 0.61 0 0.10 0.06

Similarity(apple, bread) ≈ 0.995069

Similarity(apple, digital) ≈ 0.010795



Sparse Vectors vs. Dense Vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Can we have short short (50-300 dimensional) and dense (real-valued) vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than explicit counts

• Sparse vectors can’t capture high-order co-occurrence

• 𝑤1 co-occurs with “car”, 𝑤2 co-occurs with “automobile”

• They should be similar, but they aren’t, because “car” and “automobile” are distinct 
dimensions

• In practice, they work better!
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How to Get Dense Vectors?

• Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

22

Only keep the top k singular values

Word Vector



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Counting-Based Word Vectors
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• Use one vector to represent each word 

• Get word vectors by singular value decomposition (SVD) of PPMI weighted 
co-occurrence matrix



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Learning-Based Word Vectors
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• Can we learn word vectors directly from text?



Word2Vec

• Efficient Estimation of Word Representations in Vector Space, 2013

• 50000+ citations
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Learning Word Vectors
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Map each word to a vector!

𝐯𝑔𝑟𝑒𝑎𝑡 = [0.12, 0.38, −0.91, 0.57, −0.64]

𝐯𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 = [0.16, 0.47, −0.87, 0.50, −0.55]

𝐯𝑎𝑤𝑒𝑠𝑜𝑚𝑒 = [0.08, 0.28, −0.90, 0.61, −0.54]

𝐯𝑡𝑒𝑟𝑟𝑖𝑏𝑙𝑒 = [0.92, −0.36, 0.11, −0.24, 0.14]

𝐯𝑝𝑜𝑜𝑟 = [0.85, −0.40, 0.02, −0.31, 0.23]

How to learn those word vectors/embeddings/representations?

similarity 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 =
𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2 

Semantic meaning of words

excellent

great

dog

awesome

terrible
poor

cool

chair

Semantic relationship between words



Word2Vec: Learning Problem
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Efficient Estimation of Word Representations in Vector Space, 2013

Given the context words, we can predict the most likely center word

Given the center word, we can predict the most likely context words

Based on distributional hypothesis  

Center word  Context words



Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚

28

Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 



Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚
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Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 

Classification Problem

𝑃(⋅ |𝑎) is a probability 
distribution defined over 𝒱:

෍

𝑤∈𝒱

𝑃(𝑤|𝑎) = 1

We will define the distribution soon!

𝑃(𝑏|𝑎) = given the center word 
is 𝑎, what is the probability that 

b is a context word?



Word2Vec: Overview
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𝑃 money banking) = 0.21

𝑃 crises banking) = 0.18

𝑃 deposit banking) = 0.15

𝑃 dog banking) = 0.01

𝑃 sunny banking) = 0.02

…

𝑃 turning banking) = 0.06

𝑃 money banking) = 0.06

𝑃 crises banking) = 0.19

𝑃 deposit banking) = 0.03

𝑃 dog banking) = 0.01

𝑃 sunny banking) = 0.01

…

𝑃 turning banking) = 0.30



Word2Vec: Defining Probabilities (Simplified Version)
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How to calculate 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑤𝑐𝑒𝑛𝑡𝑒𝑟)?

We consider Inner product 𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 as the score

If 𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 is higher, 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑤𝑐𝑒𝑛𝑡𝑒𝑟) is higher 

𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2 

𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑤𝑐𝑒𝑛𝑡𝑒𝑟) =
exp(𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟

∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡
)

σ𝑘∈𝑉 exp(𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑘)

Normalize scores to probabilities
Scores can be asymmetric!
It is less likely that a word 
appears in its own context



Word2Vec: Defining Probabilities (Final Version)
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How to calculate 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑤𝑐𝑒𝑛𝑡𝑒𝑟)?

We consider Inner product 𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 as the score

If 𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 is higher, 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑤𝑐𝑒𝑛𝑡𝑒𝑟) is higher 

𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2 

𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑤𝑐𝑒𝑛𝑡𝑒𝑟) =
exp(𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟

∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑘)

Normalize scores to probabilities



Word2Vec: Defining Probabilities (Final Version)
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We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗  𝑤𝑡  ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

The score to indicate how likely the context 
word 𝑤𝑡+𝑗  appears with the center word 𝑤𝑡

Normalize over entire vocabulary
to give probability distribution

Softmax function: mapping arbitrary values to a probability distribution

softmax 𝑡 =
𝑒𝑡

σ𝑐 𝑒𝑐



Word2Vec: Training Intuition
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turning banking crises

𝑃 problems into) ↑

𝑃 turning into) ↑

𝑃 banking into) ↑

𝑃 crises into) ↑

𝑃 other words into) ↓

problems



Word2Vec: Training Intuition
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turning into crises as

𝑃 turning banking) ↑

𝑃 into banking) ↑

𝑃 crises banking) ↑

𝑃 as banking) ↑

𝑃 other words banking) ↓



Word2Vec: Training Intuition
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he studied at the

𝑃 he banking) ↑

𝑃 studied banking) ↑

𝑃 at banking) ↑

𝑃 the banking) ↑

𝑃 other words banking) ↓



Word2Vec: Training Data
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Collect into training data
(into, problems)
(into, turning)
(into, banking)
(into, crises)

Collect into training data
(banking, turning)

(banking, into)
(banking, crises)

(banking, as)

𝑃(problems|into)× 𝑃(turning|into)× 𝑃(banking|into)× 𝑃(crises|into) 

Maximize the likelihood

× 𝑃(turning|banking)× 𝑃(into|banking)× 𝑃(crises|banking)× 𝑃(as|banking) 



Word2Vec: Likelihood

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed 
size 𝑚, given center word 𝑤𝑡

38

𝜃 all parameters to be optimized

Likelihood for all context words given center word 𝑤𝑡For each position 𝑡 = 1, … , 𝑇

= ℒ 𝜃 =  ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)Likelihood

Probability over all vocabulary 𝑉 



Word2Vec: Objective Function

The objective function 𝐽(𝜃) is the (average) negative log likelihood
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𝐽 𝜃 = −
1

𝑇
log ℒ 𝜃 = −

1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗  𝑤𝑡  ; 𝜃)

We minimize the objective function (also called cost or loss function)



Word2Vec: How to Train Word Vectors?
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𝜃 = 𝐮𝑘 , 𝒗𝑘  Parameters:

Objective function:

Our goal: find parameters 𝜃 that minimize the objective function 𝐽 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

Solution: stochastic gradient descent (SGD)

• Randomly initialize parameters 𝜃

•  For each iteration 𝜃 ⟵ 𝜃 − 𝜂 ∇𝜃  𝐽 𝜃

GradientLearning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/



Word2Vec: Computing the Gradients
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𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

For simplicity, we consider one pair of center/context words (𝑜, 𝑐)

Objective function

=
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

− log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

The gradients can be calculated separately!

𝑦 = − log 𝑃 𝑐 𝑜 ; 𝜃) = − log
exp(𝐮𝑜 ∙ 𝐯𝑐)

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝑦

𝜕𝐮𝑜

𝜕𝑦

𝜕𝒗𝑐

We need to compute this!



= −𝐯𝑐 +
σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)
= −𝐯𝑐 + ෍

𝑘∈𝑉

exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

Word2Vec: Computing the Gradients
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𝜕𝑦

𝜕𝐮𝑜
=

𝜕 −𝐮𝑜 ∙ 𝐯𝑐 + log σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝐮𝑜

𝑦 = − log 𝑃 𝑐 𝑜) = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐮𝑜 ∙ 𝐯𝑐

= −𝐯𝑐 +
σ𝑘∈𝑉

𝜕exp(𝐮𝑜 ∙ 𝐯𝑘)
𝜕𝐮𝑜

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐯𝑐 + ෍

𝑘∈𝑉

𝑃(𝑘|𝑜) 𝐯𝑘
𝜕𝑦

𝜕𝐯𝑘
= −1 𝑘 = 𝑐 𝐮𝑜 + 𝑃 𝑘 𝑜)𝐮𝑜

Similar calculation step

𝜕log(𝑥)

𝜕𝑥
=

1

𝑥

𝜕exp(𝑥)

𝜕𝑥
= exp 𝑥



Word2Vec: Training Process

• Randomly initialize parameters 𝐮𝑖 , 𝐯𝑖

• Walk through the training corpus and collect training data 𝑜, 𝑐
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𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
 ∀𝑘 ∈ 𝑉



Word2Vec: Negative Sampling

Issue: every time we get one pair of 𝑜, 𝑐 , we have to update 𝐯𝑘  with

all the words in the vocabulary. 
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𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
 ∀𝑘 ∈ 𝑉

Negative sampling: instead of considering all the words in 𝑉, we randomly 
sample 𝐾(5-20) negative examples

𝑦 = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)  Softmax

𝑦 = − log 𝜎 𝐮𝑜 ∙ 𝐯𝑐 − ෍

𝑖=1

𝐾

𝔼𝑗~𝑃(𝑤) log 𝜎 −𝐮𝑜 ∙ 𝐯𝑗Negative sampling

𝜎 𝑥 =
1

1 + 𝑒−𝑥



Continuous Bag of Words (CBOW) vs Skip-Grams
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Continuous Bag of Words (CBOW)
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ℒ 𝜃 =  ෑ

𝑡=1

𝑇

𝑃 𝑤𝑡 𝑤𝑡+𝑗 ) , −𝑚 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 0

ത𝐯𝑡 =
1

2𝑚
෍

−𝑚≤𝑗≤𝑚,𝑗≠0

𝐯𝑡+𝑗

𝑃 𝑤𝑡 𝑤𝑡+𝑗 ) =
exp(𝐮𝑤𝑡

∙ ത𝐯𝑡)

σ𝑘∈𝑉 exp(𝐮𝑘 ∙ ത𝐯𝑡)



GloVe: Global Vectors
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GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

Idea: capture ratios of co-occurrence probabilities as linear meaning 
components in a word vector space

𝑤𝑖 ∙ 𝑤𝑗 = log 𝑃 𝑖 𝑗)Log-bilinear model

𝑤𝑖 ∙ (𝑤𝑎 − 𝑤𝑏) =
log 𝑃 𝑥 𝑎)  

log 𝑃 𝑥 𝑏)  
Vector difference

Training faster and scalable to very large corpora!

𝐽 = ෍

𝑖,𝑗=1

𝑉

𝑓 𝑋𝑖𝑗 𝑤𝑖
⊤ ෥𝑤𝑗 + 𝑏𝑖 + ෨𝑏𝑗 − log 𝑋𝑖𝑗

2

Global co-occurrence statistics



FastText: Sub-Word Embeddings

Enriching Word Vectors with Subword Information (Bojanowski et al. 2017)
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Similar as Skip-gram, but break words into n-grams with n = 3 to 6

where

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

5-grams: <wher, where, here>

6-grams: <where, where>

Replace 𝐮𝑖 ∙ 𝐯𝑗  with ෍

𝑔∈𝑛−𝑔𝑟𝑎𝑚𝑠(𝑤𝑖)

𝐮𝑔 ∙ 𝐯𝑗



Trained Word Vectors Are Available

• Word2Vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/
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https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Learning-Based Word Vectors
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• Learn word vectors directly from text

• Word2Vec (Skip-Gram and CBOW)

• GloVe

• FastText



How to Evaluate the Quality of Word Embeddings?

• Intrinsic evaluation

• Measures the quality of word embeddings by assessing their performance on 
specific linguistic or semantic tasks

• Extrinsic evaluation

• Measures the quality of word embeddings by testing their impact on 
downstream and real-world tasks

51



Intrinsic Evaluation: Word Similarity

52



Pearson’s Correlation Coefficient
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https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php



Spearman’s Correlation Coefficient

• Pearson’s correlation coefficient on rank

• Score

• Human: [1.2, 3.4, 2.5, 0.7, 4.0]

• Machine: [0.5, 3.3, 1.0, 1.2, 3.4]

• Rank

• Human: [4, 2, 3, 5, 1]

• Machine: [5, 2, 4, 3, 1]

• Assesses monotonic relationships

• whether linear or not
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https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient



Intrinsic Evaluation: Word Similarity
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SG: Skip-Gram

GloVe: Global Vectors for Word Representation, EMNLP 2014



Intrinsic Evaluation: Word Analogy
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Word analogy

man: woman ≈ king: ? arg max
𝑤

cos(𝐮𝑤 , 𝐮𝑤𝑜𝑚𝑎𝑛 − 𝐮𝑚𝑎𝑛 + 𝐮𝑘𝑖𝑛𝑔)

Paris: France ≈ London: ?

bad: worst ≈ cool: ?



Intrinsic Evaluation: Word Analogy
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Intrinsic Evaluation: Word Analogy
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Intrinsic Evaluation: Word Analogy
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https://sanjayc.medium.com/word2vec-analogical-reasoning-d47d3a66b9fb



𝑊 =

 

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Extrinsic Evaluation: Downstream Performance
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Bob     likes     Alice     very     much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|

𝑤𝑎𝑣𝑔

Average

Bag-of-Words (word vector version)



Lecture Plan

• Counting-Based Word Vectors

• Learning-Based Word Vectors

• Evaluation for Word Vectors
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