
CSCE 638 Natural Language Processing
Foundation and Techniques

Spring 2026

Lecture 3: Word Representations

(Some slides adapted from Chris Manning, Dan Jurafsky, Richard Socher, Karthik Narasimhan, and Danqi Chen)

Kuan-Hao Huang

Course Staff

Kuan-Hao Huang

• Email: khhuang@tamu.edu

• Office Hour: Wed. 2pm – 3pm

• Office: PETR 219

1

Instructor

Rusali Saha

• Email: rs0921@tamu.edu

• Office Hour: Tue. 11am – 12pm

• Office: PETR 330

TA

For questions, send emails to csce638-ta-26s@lists.tamu.edu with “[CSCE 638] Subject …”

mailto:khhuang@tamu.edu
mailto:rs0921@tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu

Assignment 0

2

Lecture Plan

• Counting-Based Word Vectors

• Learning-Based Word Vectors

• Evaluation for Word Vectors

3

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification

4

• Teach the model how to understand example 𝑥

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification

5

• Teach the model how to make prediction 𝑦

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: Bag-of-Words and N-Grams

6

• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words and n-grams
We will discuss “learnable”

features today!

Bag-of-Words and N-Gram Features

7

Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 … 0 0 0 1 … 1 1]𝐱 = [0 1 … 0 1 1 0 … 0 1]

BoW (unigram) features Bigram features

Encode a text to one vector

We can consider trigrams, 4-grams, …

Word-Level Understanding

8
https://www.merriam-webster.com/thesaurus/great

Words as Vectors

9

Bob likes Alice very much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
𝑊 =

Advantages?

Use one vector to represent each word

Text = A list of vectors

How to Represent Words?

A simple solution: discrete symbols

10

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Words can be represented by one-hot vectors:

good = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

great = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

bad = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

One 1, the rest 0s

good bad great

Any disadvantages?

Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “good restaurant”, we would
like to match documents containing “great restaurant”

11

But

good = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

great = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

These two vectors are orthogonal

There is no way to encode similarity of words in these vectors!

Any solutions?

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

12

from nltk.corpus import wordnet as wn
poses = { 'n’ : 'noun', 'v’ : 'verb', 's’ : 'adj (s)', 'a’ : 'adj', 'r’ : 'adv'}
for synset in wn.synsets(“bad”):
 print("{}: {}".format(poses[synset.pos()],
 ", ".join([l.name() for l in synset.lemmas()])))

noun: bad, badness
adj: bad
adj (s): bad, big
adj (s): bad, tough
adj (s): bad, spoiled, spoilt
adj: regretful, sorry, bad
adj (s): bad, uncollectible
…
adj (s): bad, risky, high-risk, speculative
adj (s): bad, unfit, unsound
adj (s): bad, forged
adj (s): bad, defective
adv: badly, bad

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

13

good = [0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0]

great = [0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0]

bad = [0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0]

good bad great

welfare sorry

Similarity(good, great) > Similarity(good, bad)cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Any disadvantages?

Problems with Resources Like WordNet

• Subjective

• A useful resource but missing nuance

• e.g., “sorry” is listed as a synonym for “bad”

• This is only correct in some contexts

• Requires human labor to create and adapt

14

Representing Words by Their Contexts

15

Distributional hypothesis: A word’s meaning is given by the words that
frequently appear close-by

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking

Slide adapted from Chris Manning

Distributional Hypothesis: Example

16

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: I bought ___ yesterday.

wine

C1 C2 C3 C4

1 1 1 1

juice 1 1 0 1

loud 0 0 0 0

apples 0 1 0 1

choices 0 1 0 0

motor-oil 1 0 0 1

A word’s meaning is given by the words that frequently appear close-by

Slide adapted from Danqi Chen

Word Vectors from Word-Word Co-Occurrence Matrix

• Main idea: Similar contexts → Similar word co-occurrence

• Collect a bunch of texts and compute co-occurrence matrix

• Words can be represented by row vectors

17

shark computer data eat result sugar

apple 0 0 0 8 0 2

bread 0 0 0 9 0 1

digital 0 6 5 0 2 0

information 0 4 10 0 2 0

Word Vector High cosine
similarity!

cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Most entries are 0s → sparse vectors
Low cosine
similarity!

Issues with Word-Word Co-Occurrence Matrix

• Using raw frequency counts is not always very good (why?)

• Some frequent words (e.g., the, it, or they) can have large counts

18

shark computer data eat result sugar the it

apple 0 0 0 8 0 2 104 67

bread 0 0 0 9 0 1 95 76

digital 0 6 5 0 2 0 101 65

Similarity(apple, bread) ≈ 0.994710

Similarity(apple, digital) ≈ 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts

Pointwise Mutual Information

19

Pointwise Mutual Information (PMI)

Do events 𝑥 and 𝑦 co-occur more or less than if they were independent?

PMI 𝑥, 𝑦 = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI = 0 → 𝑥 and 𝑦 occur independently → co-occurrence is as expected

• PMI > 0 → 𝑥 and 𝑦 co-occur more often than expected

• PMI < 0 → 𝑥 and 𝑦 co-occur less often than expected

Co-Occurrence Matrix with Positive PMI

20

PPMI 𝑥, 𝑦 = max log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
, 0

Positive Pointwise Mutual Information (PPMI)

shark computer data eat result sugar the it

apple 0 0 0 1.80 0 0.35 0.08 0

bread 0 0 0 1.54 0 0.29 0 0.14

digital 0 1.47 1.22 0 0.61 0 0.10 0.06

Similarity(apple, bread) ≈ 0.995069

Similarity(apple, digital) ≈ 0.010795

Sparse Vectors vs. Dense Vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Can we have short short (50-300 dimensional) and dense (real-valued) vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than explicit counts

• Sparse vectors can’t capture high-order co-occurrence

• 𝑤1 co-occurs with “car”, 𝑤2 co-occurs with “automobile”

• They should be similar, but they aren’t, because “car” and “automobile” are distinct
dimensions

• In practice, they work better!

21

How to Get Dense Vectors?

• Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

22

Only keep the top k singular values

Word Vector

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Counting-Based Word Vectors

23

• Use one vector to represent each word

• Get word vectors by singular value decomposition (SVD) of PPMI weighted
co-occurrence matrix

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Learning-Based Word Vectors

24

• Can we learn word vectors directly from text?

Word2Vec

• Efficient Estimation of Word Representations in Vector Space, 2013

• 50000+ citations

25

Learning Word Vectors

26

Map each word to a vector!

𝐯𝑔𝑟𝑒𝑎𝑡 = [0.12, 0.38, −0.91, 0.57, −0.64]

𝐯𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 = [0.16, 0.47, −0.87, 0.50, −0.55]

𝐯𝑎𝑤𝑒𝑠𝑜𝑚𝑒 = [0.08, 0.28, −0.90, 0.61, −0.54]

𝐯𝑡𝑒𝑟𝑟𝑖𝑏𝑙𝑒 = [0.92, −0.36, 0.11, −0.24, 0.14]

𝐯𝑝𝑜𝑜𝑟 = [0.85, −0.40, 0.02, −0.31, 0.23]

How to learn those word vectors/embeddings/representations?

similarity 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 =
𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2

Semantic meaning of words

excellent

great

dog

awesome

terrible
poor

cool

chair

Semantic relationship between words

Word2Vec: Learning Problem

27
Efficient Estimation of Word Representations in Vector Space, 2013

Given the context words, we can predict the most likely center word

Given the center word, we can predict the most likely context words

Based on distributional hypothesis

Center word Context words

Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚

28

Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚

Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚

29

Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚

Classification Problem

𝑃(⋅ |𝑎) is a probability
distribution defined over 𝒱:

෍

𝑤∈𝒱

𝑃(𝑤|𝑎) = 1

We will define the distribution soon!

𝑃(𝑏|𝑎) = given the center word
is 𝑎, what is the probability that

b is a context word?

Word2Vec: Overview

30

𝑃 money banking) = 0.21

𝑃 crises banking) = 0.18

𝑃 deposit banking) = 0.15

𝑃 dog banking) = 0.01

𝑃 sunny banking) = 0.02

…

𝑃 turning banking) = 0.06

𝑃 money banking) = 0.06

𝑃 crises banking) = 0.19

𝑃 deposit banking) = 0.03

𝑃 dog banking) = 0.01

𝑃 sunny banking) = 0.01

…

𝑃 turning banking) = 0.30

Word2Vec: Defining Probabilities (Simplified Version)

31

How to calculate 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑐𝑒𝑛𝑡𝑒𝑟)?

We consider Inner product 𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 as the score

If 𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 is higher, 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑐𝑒𝑛𝑡𝑒𝑟) is higher

𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2

𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑐𝑒𝑛𝑡𝑒𝑟) =
exp(𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟

∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡
)

σ𝑘∈𝑉 exp(𝐯𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑘)

Normalize scores to probabilities
Scores can be asymmetric!
It is less likely that a word
appears in its own context

Word2Vec: Defining Probabilities (Final Version)

32

How to calculate 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑐𝑒𝑛𝑡𝑒𝑟)?

We consider Inner product 𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 as the score

If 𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡

 is higher, 𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑐𝑒𝑛𝑡𝑒𝑟) is higher

𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2

𝑃 𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑤𝑐𝑒𝑛𝑡𝑒𝑟) =
exp(𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟

∙ 𝐯𝑤𝑐𝑜𝑛𝑡𝑒𝑥𝑡
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑐𝑒𝑛𝑡𝑒𝑟
∙ 𝐯𝑘)

Normalize scores to probabilities

Word2Vec: Defining Probabilities (Final Version)

33

We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

The score to indicate how likely the context
word 𝑤𝑡+𝑗 appears with the center word 𝑤𝑡

Normalize over entire vocabulary
to give probability distribution

Softmax function: mapping arbitrary values to a probability distribution

softmax 𝑡 =
𝑒𝑡

σ𝑐 𝑒𝑐

Word2Vec: Training Intuition

34

turning banking crises

𝑃 problems into) ↑

𝑃 turning into) ↑

𝑃 banking into) ↑

𝑃 crises into) ↑

𝑃 other words into) ↓

problems

Word2Vec: Training Intuition

35

turning into crises as

𝑃 turning banking) ↑

𝑃 into banking) ↑

𝑃 crises banking) ↑

𝑃 as banking) ↑

𝑃 other words banking) ↓

Word2Vec: Training Intuition

36

he studied at the

𝑃 he banking) ↑

𝑃 studied banking) ↑

𝑃 at banking) ↑

𝑃 the banking) ↑

𝑃 other words banking) ↓

Word2Vec: Training Data

37

Collect into training data
(into, problems)
(into, turning)
(into, banking)
(into, crises)

Collect into training data
(banking, turning)

(banking, into)
(banking, crises)

(banking, as)

𝑃(problems|into)× 𝑃(turning|into)× 𝑃(banking|into)× 𝑃(crises|into)

Maximize the likelihood

× 𝑃(turning|banking)× 𝑃(into|banking)× 𝑃(crises|banking)× 𝑃(as|banking)

Word2Vec: Likelihood

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed
size 𝑚, given center word 𝑤𝑡

38

𝜃 all parameters to be optimized

Likelihood for all context words given center word 𝑤𝑡For each position 𝑡 = 1, … , 𝑇

= ℒ 𝜃 = ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)Likelihood

Probability over all vocabulary 𝑉

Word2Vec: Objective Function

The objective function 𝐽(𝜃) is the (average) negative log likelihood

39

𝐽 𝜃 = −
1

𝑇
log ℒ 𝜃 = −

1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

We minimize the objective function (also called cost or loss function)

Word2Vec: How to Train Word Vectors?

40

𝜃 = 𝐮𝑘 , 𝒗𝑘 Parameters:

Objective function:

Our goal: find parameters 𝜃 that minimize the objective function 𝐽 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

Solution: stochastic gradient descent (SGD)

• Randomly initialize parameters 𝜃

• For each iteration 𝜃 ⟵ 𝜃 − 𝜂 ∇𝜃 𝐽 𝜃

GradientLearning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/

Word2Vec: Computing the Gradients

41

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

For simplicity, we consider one pair of center/context words (𝑜, 𝑐)

Objective function

=
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

− log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

The gradients can be calculated separately!

𝑦 = − log 𝑃 𝑐 𝑜 ; 𝜃) = − log
exp(𝐮𝑜 ∙ 𝐯𝑐)

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝑦

𝜕𝐮𝑜

𝜕𝑦

𝜕𝒗𝑐

We need to compute this!

= −𝐯𝑐 +
σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)
= −𝐯𝑐 + ෍

𝑘∈𝑉

exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

Word2Vec: Computing the Gradients

42

𝜕𝑦

𝜕𝐮𝑜
=

𝜕 −𝐮𝑜 ∙ 𝐯𝑐 + log σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝐮𝑜

𝑦 = − log 𝑃 𝑐 𝑜) = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐮𝑜 ∙ 𝐯𝑐

= −𝐯𝑐 +
σ𝑘∈𝑉

𝜕exp(𝐮𝑜 ∙ 𝐯𝑘)
𝜕𝐮𝑜

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐯𝑐 + ෍

𝑘∈𝑉

𝑃(𝑘|𝑜) 𝐯𝑘
𝜕𝑦

𝜕𝐯𝑘
= −1 𝑘 = 𝑐 𝐮𝑜 + 𝑃 𝑘 𝑜)𝐮𝑜

Similar calculation step

𝜕log(𝑥)

𝜕𝑥
=

1

𝑥

𝜕exp(𝑥)

𝜕𝑥
= exp 𝑥

Word2Vec: Training Process

• Randomly initialize parameters 𝐮𝑖 , 𝐯𝑖

• Walk through the training corpus and collect training data 𝑜, 𝑐

43

𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
 ∀𝑘 ∈ 𝑉

Word2Vec: Negative Sampling

Issue: every time we get one pair of 𝑜, 𝑐 , we have to update 𝐯𝑘 with

all the words in the vocabulary.

44

𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
 ∀𝑘 ∈ 𝑉

Negative sampling: instead of considering all the words in 𝑉, we randomly
sample 𝐾(5-20) negative examples

𝑦 = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘) Softmax

𝑦 = − log 𝜎 𝐮𝑜 ∙ 𝐯𝑐 − ෍

𝑖=1

𝐾

𝔼𝑗~𝑃(𝑤) log 𝜎 −𝐮𝑜 ∙ 𝐯𝑗Negative sampling

𝜎 𝑥 =
1

1 + 𝑒−𝑥

Continuous Bag of Words (CBOW) vs Skip-Grams

45

Continuous Bag of Words (CBOW)

46

ℒ 𝜃 = ෑ

𝑡=1

𝑇

𝑃 𝑤𝑡 𝑤𝑡+𝑗) , −𝑚 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 0

ത𝐯𝑡 =
1

2𝑚
෍

−𝑚≤𝑗≤𝑚,𝑗≠0

𝐯𝑡+𝑗

𝑃 𝑤𝑡 𝑤𝑡+𝑗) =
exp(𝐮𝑤𝑡

∙ ത𝐯𝑡)

σ𝑘∈𝑉 exp(𝐮𝑘 ∙ ത𝐯𝑡)

GloVe: Global Vectors

47

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

Idea: capture ratios of co-occurrence probabilities as linear meaning
components in a word vector space

𝑤𝑖 ∙ 𝑤𝑗 = log 𝑃 𝑖 𝑗)Log-bilinear model

𝑤𝑖 ∙ (𝑤𝑎 − 𝑤𝑏) =
log 𝑃 𝑥 𝑎)

log 𝑃 𝑥 𝑏)
Vector difference

Training faster and scalable to very large corpora!

𝐽 = ෍

𝑖,𝑗=1

𝑉

𝑓 𝑋𝑖𝑗 𝑤𝑖
⊤ ෥𝑤𝑗 + 𝑏𝑖 + ෨𝑏𝑗 − log 𝑋𝑖𝑗

2

Global co-occurrence statistics

FastText: Sub-Word Embeddings

Enriching Word Vectors with Subword Information (Bojanowski et al. 2017)

48

Similar as Skip-gram, but break words into n-grams with n = 3 to 6

where

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

5-grams: <wher, where, here>

6-grams: <where, where>

Replace 𝐮𝑖 ∙ 𝐯𝑗 with ෍

𝑔∈𝑛−𝑔𝑟𝑎𝑚𝑠(𝑤𝑖)

𝐮𝑔 ∙ 𝐯𝑗

Trained Word Vectors Are Available

• Word2Vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

49

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Learning-Based Word Vectors

50

• Learn word vectors directly from text

• Word2Vec (Skip-Gram and CBOW)

• GloVe

• FastText

How to Evaluate the Quality of Word Embeddings?

• Intrinsic evaluation

• Measures the quality of word embeddings by assessing their performance on
specific linguistic or semantic tasks

• Extrinsic evaluation

• Measures the quality of word embeddings by testing their impact on
downstream and real-world tasks

51

Intrinsic Evaluation: Word Similarity

52

Pearson’s Correlation Coefficient

53
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php

Spearman’s Correlation Coefficient

• Pearson’s correlation coefficient on rank

• Score

• Human: [1.2, 3.4, 2.5, 0.7, 4.0]

• Machine: [0.5, 3.3, 1.0, 1.2, 3.4]

• Rank

• Human: [4, 2, 3, 5, 1]

• Machine: [5, 2, 4, 3, 1]

• Assesses monotonic relationships

• whether linear or not

54
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Intrinsic Evaluation: Word Similarity

55

SG: Skip-Gram

GloVe: Global Vectors for Word Representation, EMNLP 2014

Intrinsic Evaluation: Word Analogy

56

Word analogy

man: woman ≈ king: ? arg max
𝑤

cos(𝐮𝑤 , 𝐮𝑤𝑜𝑚𝑎𝑛 − 𝐮𝑚𝑎𝑛 + 𝐮𝑘𝑖𝑛𝑔)

Paris: France ≈ London: ?

bad: worst ≈ cool: ?

Intrinsic Evaluation: Word Analogy

57

Intrinsic Evaluation: Word Analogy

58

Intrinsic Evaluation: Word Analogy

59
https://sanjayc.medium.com/word2vec-analogical-reasoning-d47d3a66b9fb

𝑊 =

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Extrinsic Evaluation: Downstream Performance

60

Bob likes Alice very much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|

𝑤𝑎𝑣𝑔

Average

Bag-of-Words (word vector version)

Lecture Plan

• Counting-Based Word Vectors

• Learning-Based Word Vectors

• Evaluation for Word Vectors

61

	Slide 0: CSCE 638 Natural Language Processing Foundation and Techniques
	Slide 1: Course Staff
	Slide 2: Assignment 0
	Slide 3: Lecture Plan
	Slide 4: Recap: A General Framework for Text Classification
	Slide 5: Recap: A General Framework for Text Classification
	Slide 6: Recap: Bag-of-Words and N-Grams
	Slide 7: Bag-of-Words and N-Gram Features
	Slide 8: Word-Level Understanding
	Slide 9: Words as Vectors
	Slide 10: How to Represent Words?
	Slide 11: Problem with Words as Discrete Symbols
	Slide 12: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 13: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 14: Problems with Resources Like WordNet
	Slide 15: Representing Words by Their Contexts
	Slide 16: Distributional Hypothesis: Example
	Slide 17: Word Vectors from Word-Word Co-Occurrence Matrix
	Slide 18: Issues with Word-Word Co-Occurrence Matrix
	Slide 19: Pointwise Mutual Information
	Slide 20: Co-Occurrence Matrix with Positive PMI
	Slide 21: Sparse Vectors vs. Dense Vectors
	Slide 22: How to Get Dense Vectors?
	Slide 23: Counting-Based Word Vectors
	Slide 24: Learning-Based Word Vectors
	Slide 25: Word2Vec
	Slide 26: Learning Word Vectors
	Slide 27: Word2Vec: Learning Problem
	Slide 28: Word2Vec: Overview
	Slide 29: Word2Vec: Overview
	Slide 30: Word2Vec: Overview
	Slide 31: Word2Vec: Defining Probabilities (Simplified Version)
	Slide 32: Word2Vec: Defining Probabilities (Final Version)
	Slide 33: Word2Vec: Defining Probabilities (Final Version)
	Slide 34: Word2Vec: Training Intuition
	Slide 35: Word2Vec: Training Intuition
	Slide 36: Word2Vec: Training Intuition
	Slide 37: Word2Vec: Training Data
	Slide 38: Word2Vec: Likelihood
	Slide 39: Word2Vec: Objective Function
	Slide 40: Word2Vec: How to Train Word Vectors?
	Slide 41: Word2Vec: Computing the Gradients
	Slide 42: Word2Vec: Computing the Gradients
	Slide 43: Word2Vec: Training Process
	Slide 44: Word2Vec: Negative Sampling
	Slide 45: Continuous Bag of Words (CBOW) vs Skip-Grams
	Slide 46: Continuous Bag of Words (CBOW)
	Slide 47: GloVe: Global Vectors
	Slide 48: FastText: Sub-Word Embeddings
	Slide 49: Trained Word Vectors Are Available
	Slide 50: Learning-Based Word Vectors
	Slide 51: How to Evaluate the Quality of Word Embeddings?
	Slide 52: Intrinsic Evaluation: Word Similarity
	Slide 53: Pearson’s Correlation Coefficient
	Slide 54: Spearman’s Correlation Coefficient
	Slide 55: Intrinsic Evaluation: Word Similarity
	Slide 56: Intrinsic Evaluation: Word Analogy
	Slide 57: Intrinsic Evaluation: Word Analogy
	Slide 58: Intrinsic Evaluation: Word Analogy
	Slide 59: Intrinsic Evaluation: Word Analogy
	Slide 60: Extrinsic Evaluation: Downstream Performance
	Slide 61: Lecture Plan

