CSCE 638 Natural Language Processing
Foundation and Techniques

Lecture 3: Word Representations

Kuan-Hao Huang
Spring 2026

i

(Some slides adapted from Chris Manning, Dan Jurafsky, Richard Socher, Karthik Narasimhan, and Dangi Chen)

Course Staff

Instructor TA

ah

Kuan-Hao Huang Rusali Saha
Email: Khhuang@tamu.edu - Email: rs0921 @tamu.edu
. Office Hour: Wed. 2pm —3pm Office Hour: Tue. 11lam —12pm
- Office: PETR 219 - Office: PETR 330

For questions, send emails to csceb38-ta-26s@lists.tamu.edu with “[CSCE 638] Subject ...”

mailto:khhuang@tamu.edu
mailto:rs0921@tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu
mailto:csce638-ta-26s@lists.tamu.edu

Assignment O

Assignment 0

RELEASE DATE: 01/20,/2026
DUE DATE: 01/29/2026 11:59pm on Gradescope

LaTeX Template: https://www.overleaf.com/read/pzhhcsmdfyst#557346
Name: First-Name Last-Name UIN: 000000000

This assignment consists of two parts: a writing section and a programming section. For the writing
section, please use the provided KTEX template to prepare your solutions and remember to fill in
your name and UIN. For the programming section, please follow the instructions carefully.

Discussions with others on course materials and assignment solutions are encouraged, and the use
of AI tools as assistance is permitted. However, you must ensure that the final solutions are
written in your own words. It is your responsibility to avoid excessive similarity to others’
work. Additionally, please clearly indicate any parts where AI tools were used as assistance.

If you have any question, please send an email to csce638-ta-26s@list.tamu.edu

Lecture Plan

- Counting-Based Word Vectors
« Learning-Based Word Vectors
- Evaluation for Word Vectors

Recap: A General Framework for Text Classification

Text x ——

_

Feature
(Representation)

J

Classifier
(Model)

— Label y

- Teach the model how to understand example x

Recap: A General Framework for Text Classification

Text x ——

_

Feature
(Representation)

J

» Teach the model how to make prediction y

Classifier
(Model)

—> Labely

Recap: Bag-of-Words and N-Grams

Text x ——

G

Feature
(Representation)

J

Classifier

(Model) — Label y

- Teach the model how to understand example x

« Convert the text to a mathematical form

- The mathematical form captures essential characteristics of the text
- Bag-of-words and n-grams

We will discuss “learnable”
features today!

Bag-of-Words and N-Gram Features

Bob likes Alice very much Alice likes Bob very much
...0110... X = .. 0001 ..

/

BoW (unigram) features Bigram features

We can consider trigrams, 4-grames, ...

Encode a text to one vector

Word-Level Understanding

Synonyms & Similar Words

excellent wonderful

awesome fantastic

lovely beautiful

[marvelous [@)
great .- adjective

quality classic
i f h |
1 asin excellent amous eavenly
splendid exceptional

of the very best kind
Antonyms & Near Antonyms

| this cake is great!

Cpoor
Cpathetic
Chad
unsatisfactory
substandard execrable
mediocre second-class

https://www.merriam-webster.com/thesaurus/great

terrific
superb_
prime

neat
cool ()
good

divine

awful

atrocious

wretched
inferior
low-grade

middling

Words as Vectors

Bob likes Alice very much

| | | | |
W = Whob Wiikes Walice erry Wimuch

Use one vector to represent each word
Text = A list of vectors

Advantages?

How to Represent Words?

A simple solution: discrete symbols

One 1, the rest Os

1!

Words can be represented by one-hot vectors:

good = [0001000000000O0O0 O]
great = 00000000000001O0 0

bad = [0000000100000000O0
T T T
good bad great

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Any disadvantages?

10

Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “good restaurant”, we would
like to match documents containing “great restaurant”

But

good = [00010000000000O0Q0]
0000000000000 1O0AQ]

great

These two vectors are orthogonal
There is no way to encode similarity of words in these vectors!

Any solutions?

11

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of

Synonyms, antonyms, and hypernyms

from nltk.corpus import wordnet as wn

1.7 1

poses={'n":'noun’, 'V’ : 'verb', 's’ : 'adj (s)', 'a’ : 'adj’, 'r’ : 'adv'}

for synset in wn.synsets(“bad”):
print("{}: {}".format(poses[synset.pos()],

, ".join([l.name() for | in synset.lemmas()])))

noun: bad, badness

adj: bad

adj (s): bad, big

adj (s): bad, tough

adj (s): bad, spoiled, spoilt
adj: regretful, sorry, bad
adj (s): bad, uncollectible

adj (s): bad, risky, high-risk, speculative
adj (s): bad, unfit, unsound

adj (s): bad, forged

adj (s): bad, defective

adv: badly, bad

12

Previous Solution: Synonyms, Antonyms, and Hypernyms

Consider external resources like WordNet, a thesaurus containing lists of
Synonyms, antonyms, and hypernyms

welfare sorry

! !
good = 0101000000000 1 0 Q0]

great = 00010000000001O0 0

bad = [00000001001000 0 0]
1 T 1
good bad great

u-v

cos(u,v) = Tul[[v] Similarity(good, great) > Similarity(good, bad)

Any disadvantages?

Problems with Resources Like WordNet

- Subjective
« A useful resource but missing nuance

- e.g., “sorry” is listed as a synonym for “bad”

- Thisis only correct in some contexts

- Requires human labor to create and adapt

14

Representing Words by Their Contexts

Distributional hypothesis: A word’s meaning is given by the words that
frequently appear close-by

J.R.Firth 1957

“You shall know a word by the company it keeps”
« One of the most successful ideas of modern statistical NLP!

...government debt problems turning info banking crises as happened in 20089...
...saying that Europe needs unified banking regulation fo replace the hodgepodge...
...IndlIa has just given its banking system a shot in the arm...

These context words will represent banking

15
Slide adapted from Chris Manning

Distributional Hypothesis: Example

Cl1 C2 C3 C4

Cl: A bottle of _ is on the table. wine 1 1 1 1
C2: Everybody likes . juice ! 1 0 1
, loud 0 0 0 0

C3: Don’t have _ before you drive.
apples 0 1 0 1
C4: |1 bought yesterday. choices 0 1 0 0
motor-oil 1 0 0 1

A word’s meaning is given by the words that frequently appear close-by

Slide adapted from Dangi Chen

16

Word Vectors from Word-Word Co-Occurrence Matrix

« Main idea: Similar contexts = Similar word co-occurrence

 Collect a bunch of texts and compute co-occurrence matrix

apple
bread

digital

information

- Words can be represented by row vectors cos(u,v) = ”::”'”‘;”
Word Vector Hi.gh- cqsine
similarity!
shark computer data eat m sugar
0 0 0 8 0 2|
0 0 0 9 0 1
0 6 5 0 2 0
0 4 10 0 2 0 \
Low cosine
Most entries are Os = sparse vectors similarity!

17

Issues with Word-Word Co-Occurrence Matrix

- Using raw frequency counts is not always very good (why?)

- Some frequent words (e.g., the, it, or they) can have large counts

shark computer data eat result sugar the
apple 0 0 0 8 0 2 104
bread 0 0 0 9 0 1 95
digital 0 6 5 0 2 0 101

Similarity(apple, bread) = 0.994710
Similarity(apple, digital) = 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts

67/
76
65

18

Pointwise Mutual Information

Pointwise Mutual Information (PMI)

Do events x and y co-occur more or less than if they were independent?

P(x,y)

PMI(x,y) = log, P(x)P(y)

- PMI =0 -2 x and y occur independently = co-occurrence is as expected

- PMI>0 - x and y co-occur more often than expected

- PMI <0 = x and y co-occur less often than expected

19

Co-Occurrence Matrix with Positive PMI

Positive Pointwise Mutual Information (PPMI)

P(x,y)
PPMI(x,y) = max <log2 ,0
P(x)P(y)
shark ~ computer data eat result sugar the
apple 0 0 0 1.80 0 0.35 0.08
bread 0 0 0 1.54 0 0.29 0
digital 0 1.47 1.22 0 0.61 0 0.10

Similarity(apple, bread) = 0.995069
Similarity(apple, digital) = 0.010795

0.14
0.06

20

Sparse Vectors vs. Dense Vectors

« The vectors in the word-word occurrence matrix are
- Long: vocabulary size
 Sparse: most are O’s

- Can we have short short (50-300 dimensional) and dense (real-valued) vectors?
- Short vectors are easier to use as features in ML systems
- Dense vectors may generalize better than explicit counts

- Sparse vectors can’t capture high-order co-occurrence
« Wy co-occurs with “car”, w, co-occurs with “automobile”

- They should be similar, but they aren’t, because “car” and “automobile” are distinct
dimensions

 In practice, they work better!

21

How to Get Dense Vectors?

- Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

opb 0 O 0
0 oo O 0

] i JL0 0 0 ...0ov ||]
V| x|V| V| x|V| V| x V]| V| x V| Word Vector

Only keep the top k singular values

- . B] —0'1 0O 0 ... O-W
0 oo 0 ... O L _
X B 174 _M kx|V] |V|Xk

|][0 0 0 ..o
14314 VIxk kxk

Counting-Based Word Vectors

Text x Feature R Classifier Label
(Representation) (Model) y

_ J _ Y

- Use one vector to represent each word

- Get word vectors by singular value decomposition (SVD) of PPMI weighted
Co-occurrence matrix

Learning-Based Word Vectors

Text x ——

G

Feature
(Representation)

J

Classifier
(Model)

— Label y

- Can we learn word vectors directly from text?

24

Word2Vec

- Efficient Estimation of Word Representations in Vector Space, 2013

« 50000+ citations

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA
tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA
gcorrado@google.com

Kai Chen
Google Inc., Mountain View, CA
kaichen@google.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

25

Learning Word Vectors

Vword1l * Vword2

Map each word to a vector! similarity(word1, word2) =
”Vwordl ” X ”Vwordz
Vyrea: =|[0.12,0.38,—0.91,0.57, —0.64]
great awesome
Vorxcelient =|[0.16,0.47,—0.87,0.50, —0.55] excellent chair
Vawesome = [0.08,0.28,—0.90,0.61, —0.54] cool
Vierrible = [0.92, —0.36,0.11, —0.24, 0.14] terrible
oor
Vooor =|[0.85,-0.40,0.02,—0.31,0.23] dog P
Semantic meaning of words Semantic relationship between words

How to learn those word vectors/embeddings/representations?

26

Word2Vec: Learning Problem

...government debt problems turning info banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

Based on distributional hypothesis

Center word &> Context words

Given the context words, we can predict the most likely center word

Given the center word, we can predict the most likely context words

Efficient Estimation of Word Representations in Vector Space, 2013

27

Word2Vec: Overview

- Main idea: we want to use words to predict their context words

-« Context: a fixed window of size m
Use center word w; to predict context words wy_,,, t0 Weym
P(Wt—Z | Wt') P(Wt+2 | Wt)

P(We—q | We) P(Weyq | We)

P(we_p | wy) P(Weip | we)

28

Word2Vec: Overview

- Main idea: we want to use words to predict their context words

« Context: a fixed window of size m

Classification Problem

Use center word w; to predict context words wy_,,, t0 Wg o,

P(wi_z | wy)

P(we_q | W)

/

P(Weip | we)

P(b|a) = given the center word
is a, what is the probability that
b is a context word?

P(Wiyq | we)

P(- |a) is a probability
distribution defined over V:

We will define the distribution soon!

29

Word2Vec: Overview

P(we_p | we) P(Weyp | We)

P(we_q | we) P(Weir | we)

P(money | banking) = 0.21
P(crises | banking) = 0.18
P(deposit | banking) = 0.15
P(dog | banking) = 0.01
P(turning | banking) = 0.06

P(sunny | banking) = 0.02

P(Wt—z | Wt) P(Wt+2 | Wt)
P(wi_q | W) P(Weyq | W)

P(money | banking) = 0.06
P(crises | banking) = 0.19
P(deposit | banking) = 0.03
P(dog | banking) = 0.01
P(turning | banking) = 0.30

P(sunny | banking) = 0.01

30

Word2Vec: Defining Probabilities (Simplified Version)

Vword1l * Yword2

”Vwordl ” X ”Vwordz ”

We consider Inner product v,, * V. as the score

center Wceontext

eXp(Vchnter . VWcontext)
ZkEV exXp (Vchnter . Vk)

P(Wcontextl Weenter) =

Scores can be asymmetric! _ o
It is less likely that a word Normalize scores to probabilities

appears in its own context

31

Word2Vec: Defining Probabilities (Final Version)

Vword1l * Yword2

”Vwordl ” X ”Vwordz ”

-V as the score

Wceontext

We consider Inner product Uy oo

f u . is higher, P(W¢ontext| Weenter) is higher

- V.
Wceenter Wcontex

exp (chenter ’ VWcontext)
ZkEV exp (chenter . Vk)

P (Wcontextl Weenter) =

Normalize scores to probabilities

32

Word2Vec: Defining Probabilities (Final Version)

We have two sets of vectors for each word in the vocabulary

u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

P(WH_]-‘ w;;0) =

/

exp(Uy, * Vi, ;)

Normalize over entire vocabulary
to give probability distribution

J
Zkev eXp(th) Vk)\

The score to indicate how likely the context
word w; . ; appears with the center word w;

Softmax function: mapping arbitrary values to a probability distribution

et

2cee

softmax(t) =

Word2Vec: Training Intuition

P(wi—z | we) P(Wein | W)

P(wi_q1 | we) P(Wiiq | we)

problems turning

banking crises

P(problems | into) T
P(turning | into) T
P(banking | into) T
P(crises | into)

P(other words | into) ¢

34

Word2Vec: Training Intuition

P(we_p | wy) P(Weip | we)

P(wi_q1 | wt) P(Weyq | we)

turning into crises as
P(turning | banking) T

P(into | banking) T

P(crises | banking)

P(as | banking)

P(other words | banking)

35

Word2Vec: Training Intuition

P(we—p | we)

P(we_q | we)

he studied

P(he | banking) T
P(studied | banking)
P(at | banking) T

P(the | banking)
P(other words | banking)

at

P(Weip | we)

P(Weiq | we)

the ...

36

Word2Vec: Training Data

P(wr—z | we) P(Weiz | We) Collect into training data
P(we—y [wy) PWeyq | We) (into, prOblemS)

(into, turning)

(into, banking)

problems turning banking crises as

| Y] — (v J . .
outside context words center word outside context words (' nto, CFISGS)
in window of size 2 at position t in window of size 2
P(we_p | wy) P(Weyp | W) : .
Collect into training data
P(we—q W) P(Wiiq | We) (banking turning)
problems turning into crises as .. (banking, into)

| , N , . (banking, crises)
outside context words center word outside context words :
in window of size 2 at positiont in window of size 2 (ba nki ne, aS)

Maximize the likelihood
P(problems|into)Xx P(turning|into)X P(banking|into)X P(crises|into)
X P(turning|banking)Xx P(into|banking)x P(crises|banking)x P(as|banking)

37

Word2Vec: Likelihood

P(We_p | we)

problems turning

L J
Y ;Y—J \

P(Wpio | We)

P(Weyq | We)

banking

crises as

J

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

For each positiont = 1, ..., T, predict context words within a window of fixed

size m, given center word w;

T

Likelihood = L(0) = 1_[

t=1

0 all parameters to be optimized

/

§

—msjsm,j+

Z

"¢
P(Wt+j| wy ;0)

Probability over

all vocabulary V

For each positiont = 1, ..., T Likelihood for all context words given center word w;

38

Word2Vec: Objective Function

P(w_z | W) P(Wiip | We)
P(we_q | W) P(Weyq | We)

problems turning banking crises as

‘ Y J ;Y—J L Y J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

The objective function J(0) is the (average) negative log likelihood

J(9)=—%logz:<9)— Z Z log P(we)| we ; 6)

—-m<jsm,j+0

We minimize the objective function (also called cost or loss function)

39

Word2Vec: How to Train Word Vectors?
Parameters: 6 = {{uk} {vk}}

Objective function: J(8) = ——z Z logP(WHj‘ W ; 8)

—-msjs<m,j+0

Our goal: find parameters 6 that minimize the objective function J(8)

Cost

A

Solution: stochastic gradient descent (SGD)

Learning step

- Randomly initialize parameters 8 |
+ For eachiteration 8 «— 0 —nVy J(0) Minimum

/ I , - > 8

:) Random
Learning step Gradient initial value

D>

40
https://insightfultscript.com/collections/programming/machine-learning/sgd/

Word2Vec: Computing the Gradients

Objective function

J(6) ———Z

2.

log P(WH]-‘ w; ; 0)

—-msj<m,j+0

TZ

—_m=<

2.

— log P(WH]-‘ w; ; 0)

j<m,j+8

The gradients can be calculated separately!

For simplicity, we consider one pair of center/context words (o, ¢)

y = —logP(clo;0) = —log(

exp(u, * V) > dy 0y
Lrey €xp(u, - Vi)

du, Jdv,

We need to compute this!

41

Word2Vec: Computing the Gradients

exp(u, - V))

y = —logP(clo) = —log(z exp (i, - V.)
kev 0

dlog(x)

0
ay _ a(_uo Ve + log(ZkEV exp(uo ’ Vk)))

du, du,

—log(exp(u, - v.)) t+ log<z exp(u, * Vi)

keVv
dexp(x)

R | = l

X

Yker — g
—V, +

’ Ykev €xXp(u, + Vi)

Dkev exp(u, - Vi) vy exp(u, - Vi) Vg
= -V + = —V, +

© Zkev exp(U, - Vi)

z:kEV exp(uo ’ Vk)

kev
= v, + P(k|o) vy — = —-1(k = c)uo + P(k|0)uo
kev aVR

Similar calculation step

|

dexp(U, - Vi) o~ P

42

Word2Vec: Training Process

- Randomly initialize parameters u;, v;

- Walk through the training corpus and collect training data (o, ¢)

Pwe—z | we) P(Weip | We)

P(wWe_q | W) P(Weiq | We)

problems turning banking crises as

L Y J _Y_j L ' [
outside context words center word outside context words
in window of size 2 at positiont in window of size 2
0% y
U, < U, —n Vi <V, —N— Vk eV

ou, 0Vy,

Word2Vec: Negative Sampling

Issue: every time we get one pair of (0, c), we have to update v, with

all the words in the vocabulary.
dy

— 1 du,

U, < u,

Negative sampling: instead of considering all the words in VV, we randomly
sample K(5-20) negative examples

exp(u, - V) >

ZkEV eXp(“o) Vk)

= —log(exp(u, - v.)) + log (Z exp(u, - Vk)>

Softmax y = —10g<
kev

K
Negative sampling y = —log(o(u, - v.)) — 2 E;-pew) log(o(—u, - v;))
=1

1
1+e*

o(x) =

Continuous Bag of Words (CBOW) vs Skip-Grams

INPUT PROJECTION

w(t-2)

w(t-1)

w(t+1)

w(t+2)

N\

SUM

CBOW

OUTPUT

4-] w(t)

INPUT

w(t)

e

Skip-gram

PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

45

Continuous Bag of Words (CBOW)

INPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

N

PROJECTION

SUM

OUTPUT

H] i

L(O) =

T
t=

Pwel{wey), —m<j<m,j#0

1

exp(Uy, * Vi)

Drey €Xp(uy - V)

1
I

—-msjsm,j+0

P(th{Wt+j}) —

46

GloVe: Global Vectors

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

|dea: capture ratios of co-occurrence probabilities as linear meaning
components in a word vector space

Log-bilinear model Wi - W = log P(il))

_ log P(x|a)
~ log P(x|b)

Vector difference w; - (w, — wy)

%

I,j=1 .
J \ Global co-occurrence statistics

Training faster and scalable to very large corporal!

FastText: Sub-Word Embeddings

Enriching Word Vectors with Subword Information (Bojanowski et al. 2017)

Similar as Skip-gram, but break words into n-grams withn=3to 6

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

where
5-grams: <wher, where, here>
6-grams: <where, where>
Replace u; - v; with 2 U, -V

geEn—grams(w;)

Trained Word Vectors Are Available

« Word2Vec: https://code.google.com/archive/p/word2vec/

« GloVe: https://nlp.stanford.edu/projects/glove/
« FastText: https://fasttext.cc/

49

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Learning-Based Word Vectors

Text x ——

_

Feature
(Representation)

J

Classifier
(Model)

— Label y

- Learn word vectors directly from text
- Word2Vec (Skip-Gram and CBOW)

- GloVe
« FastText

50

How to Evaluate the Quality of Word Embeddings?

e |Intrinsic evaluation

- Measures the quality of word embeddings by assessing their performance on
specific linguistic or semantic tasks

« Extrinsic evaluation

- Measures the quality of word embeddings by testing their impact on
downstream and real-world tasks

51

Intrinsic Evaluation: Word Similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim

Word 1__Word 2__Human (mean)_

tiger cat
tiger tiger
book paper
computer internet
plane car
professor doctor
stock phone
stock CD
stock jaguar

35
10

7.46
7.58
5.77
6.62
1.62
131
0.92

Cosine similarity:
Ui - U;

[lwil2 x [|ujl[2

cos(ui, uj) =

Metric: Spearman rank correlation

52

Pearson’s Correlation Coefficient

D VG [
V(@ —2)° Y (y; - 3)°

T = correlation coefficient

L = values of the x-variable in a sample
I = mean of the values of the x-variable
Yi = values of the y-variable in a sample
Y = mean of the values of the y-variable

r=10.7

v

r=10.3

r=-0.7

L 4

r=-0.3.

w

L J

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php

h 4

¥

53

Spearman’s Correlation Coefficient

Pearson’s correlation coefficient on rank

Score

« Human: [1.2, 3.4, 2.5, 0.7, 4.0]

« Machine: [0.5,3.3,1.0, 1.2, 3.4]
Rank

« Human: [4, 2, 3, 5, 1]

« Machine: [5, 2, 4, 3, 1]

Assesses monotonic relationships

« whether linear or not

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

—10

—15

Spearman correlation=1

Pearson correlation=0.88

54

Intrinsic Evaluation: Word Similarity

Model Size |[WS353 MC RG SCWS RW
SVD 6B | 35.3 35.1 425 383 256
SVD-S 6B | 56.5 71.5 71.0 53.6 34.7
SVD-L 6B | 657 727 751 56.5 37.0
CBOW' 6B | 572 65.6 682 57.0 325
SGT 6B | 62.8 652 69.7 58.1 372
GloVe 6B | 658 727 71.8 539 38.1
SVD-L 42B| 740 764 74.1 583 399
GloVe 42B| 75.9 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 594 455

SG: Skip-Gram

GloVe: Global Vectors for Word Representation, EMNLP 2014

Intrinsic Evaluation: Word Analogy

Word analogy
man: woman = king: ? arg mme}x(cos(uw, Wyoman — Uman + Uking))
Paris: France = London: ? 1
bad: worst = cool: ? 0.75 king—""
0.5
woman
0.25 man

0 0.25 0.5 0.75 1

Intrinsic Evaluation: Word Analogy

1 | T | [| |
05+ r heiress .
0.4 :, .
I- niece [* countess
03F *aunt | /- duchess-
T%istel‘1 [/ /
/
0.2+ : I ;J / If , empress
| | / /
o1k o I’ » madam r 1y i
e ol / /I/
1 elr / /
ok : nepH|ew) Ly)
| 1 ; woman loarl!
-0.1F | uncle I rquesn ! }
| brother ! f / dduke
-0.2r | | .
/ P
/
/ emperor
o3l f ’ | ‘emp |
/ I
/ / [
-04+ | / [.
/ {sir |
_05- {man lking .
1 1 I | | | | | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

57

Intrinsic Evaluation: Word Analogy

0.4

0.3

0.2

0.1

_ . — — slowest

,‘slower 000000 _ == shortest

. IR pp—

Py _ 7 shorter
slow« ’
7
7
shorts
L eONGar. ™ ™ = = -
_, 7 stronger ~ strongest
/ —
Flouder — T T S e e
strong < _ - loudest
IOUd}‘_/ _______
e Clearer — = = = = = = = - — — — _ — clearest
ssoffefl = T T T == - o o
Pl — — — - softest
7 =
clear <~ .~ darker — — - - - — _
g g T TEORIR T TR T T S e s | G
soft # "~ darkest
¥ i
dark ~

58

Intrinsic Evaluation: Word Analogy

king .~

Male-Female

https://sanjayc.medium.com/word2vec-analogical-reasoning-d47d3a66b9fb

-,

@

walking

swimming

Verb tense

Spain \
Italy —-—-____-________-fadrid
Rome

Germany =
—= Berlin
Ankara
Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

59

Extrinsic Evaluation: Downstream Performance

4)
Text x Feature R Classifier Label
(Representation) (Model) y
g ‘ J
Wavg

Bob likes A//'Ie very —much

| | | | | Bag-of-Words (word vector version)
W = Whob Wiikes Walice Wvery Wmuch

Average

Lecture Plan

- Counting-Based Word Vectors
« Learning-Based Word Vectors
- Evaluation for Word Vectors

61

	Slide 0: CSCE 638 Natural Language Processing Foundation and Techniques
	Slide 1: Course Staff
	Slide 2: Assignment 0
	Slide 3: Lecture Plan
	Slide 4: Recap: A General Framework for Text Classification
	Slide 5: Recap: A General Framework for Text Classification
	Slide 6: Recap: Bag-of-Words and N-Grams
	Slide 7: Bag-of-Words and N-Gram Features
	Slide 8: Word-Level Understanding
	Slide 9: Words as Vectors
	Slide 10: How to Represent Words?
	Slide 11: Problem with Words as Discrete Symbols
	Slide 12: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 13: Previous Solution: Synonyms, Antonyms, and Hypernyms
	Slide 14: Problems with Resources Like WordNet
	Slide 15: Representing Words by Their Contexts
	Slide 16: Distributional Hypothesis: Example
	Slide 17: Word Vectors from Word-Word Co-Occurrence Matrix
	Slide 18: Issues with Word-Word Co-Occurrence Matrix
	Slide 19: Pointwise Mutual Information
	Slide 20: Co-Occurrence Matrix with Positive PMI
	Slide 21: Sparse Vectors vs. Dense Vectors
	Slide 22: How to Get Dense Vectors?
	Slide 23: Counting-Based Word Vectors
	Slide 24: Learning-Based Word Vectors
	Slide 25: Word2Vec
	Slide 26: Learning Word Vectors
	Slide 27: Word2Vec: Learning Problem
	Slide 28: Word2Vec: Overview
	Slide 29: Word2Vec: Overview
	Slide 30: Word2Vec: Overview
	Slide 31: Word2Vec: Defining Probabilities (Simplified Version)
	Slide 32: Word2Vec: Defining Probabilities (Final Version)
	Slide 33: Word2Vec: Defining Probabilities (Final Version)
	Slide 34: Word2Vec: Training Intuition
	Slide 35: Word2Vec: Training Intuition
	Slide 36: Word2Vec: Training Intuition
	Slide 37: Word2Vec: Training Data
	Slide 38: Word2Vec: Likelihood
	Slide 39: Word2Vec: Objective Function
	Slide 40: Word2Vec: How to Train Word Vectors?
	Slide 41: Word2Vec: Computing the Gradients
	Slide 42: Word2Vec: Computing the Gradients
	Slide 43: Word2Vec: Training Process
	Slide 44: Word2Vec: Negative Sampling
	Slide 45: Continuous Bag of Words (CBOW) vs Skip-Grams
	Slide 46: Continuous Bag of Words (CBOW)
	Slide 47: GloVe: Global Vectors
	Slide 48: FastText: Sub-Word Embeddings
	Slide 49: Trained Word Vectors Are Available
	Slide 50: Learning-Based Word Vectors
	Slide 51: How to Evaluate the Quality of Word Embeddings?
	Slide 52: Intrinsic Evaluation: Word Similarity
	Slide 53: Pearson’s Correlation Coefficient
	Slide 54: Spearman’s Correlation Coefficient
	Slide 55: Intrinsic Evaluation: Word Similarity
	Slide 56: Intrinsic Evaluation: Word Analogy
	Slide 57: Intrinsic Evaluation: Word Analogy
	Slide 58: Intrinsic Evaluation: Word Analogy
	Slide 59: Intrinsic Evaluation: Word Analogy
	Slide 60: Extrinsic Evaluation: Downstream Performance
	Slide 61: Lecture Plan

