CSCE 638 Natural Language Processing
Foundation and Techniques

Lecture 4: Tokenization, Language Modeling, and Decoding Methods

Kuan-Hao Huang
Spring 2026

i

(Some slides adapted from Karthik Narasimhan, Dangi Chen, Graham Neubig, Greg Durrett, and Vivian Chen)

Assignment O

Assignment 0

RELEASE DATE: 01/20,/2026
DUE DATE: 01/29/2026 11:59pm on Gradescope

LaTeX Template: https://www.overleaf.com/read/pzhhcsmdfyst#557346
Name: First-Name Last-Name UIN: 000000000

This assignment consists of two parts: a writing section and a programming section. For the writing
section, please use the provided KTEX template to prepare your solutions and remember to fill in
your name and UIN. For the programming section, please follow the instructions carefully.

Discussions with others on course materials and assignment solutions are encouraged, and the use
of AI tools as assistance is permitted. However, you must ensure that the final solutions are
written in your own words. It is your responsibility to avoid excessive similarity to others’
work. Additionally, please clearly indicate any parts where AI tools were used as assistance.

If you have any question, please send an email to csce638-ta-26s@list.tamu.edu

Assignment 1

Assignment 1

RELEASE DATE: 01/28/2026
DUE DATE: 02/10/2026 11:59pm on Gradescope

IXTEX Template: https://www.overleaf.com/read/tsrvwjgzwjrw#942964
Name: First-Name Last-Name UIN: 000000000

This assignment consists of two parts: a writing section and a programming section. For the writing
section, please use the provided E'TEX template to prepare your solutions and remember to fill in
your name and UIN. For the programming section, please follow the instructions carefully.

Discussions with others on course materials and assignment solutions are encouraged, and the use
of Al tools as assistance is permitted. However, you must ensure that the final solutions are
written in your own words. It is your responsibility to avoid excessive similarity to others’
work. Additionally, please clearly indicate any parts where AI tools were used as assistance.

If you have any question, please send an email to csce638-ta-26s@list.tamu.edu

Lecture Plan

- Tokenization
- Subwords
- Byte-Pair Encoding
- Language Models
« Definition of Language Models
« N-Gram Language Models
- Language Model Decoding Methods
- Neural Language Models

Recap: Word Vectors

Vword1l * Vword2

Map each word to a vector! similarity(word1, word2) =
”Vwordl ” X ”Vwordz
Vyrear =|[0.12,0.38,—0.91,0.57, —0.64]
great awesome
Vorxcelient =|[0.16,0.47,—0.87,0.50, —0.55] excellent chair
Vawesome = [0.08,0.28,—0.90,0.61, —0.54] cool
Vierrible = [0.92, —0.36,0.11, —0.24, 0.14] terrible
O0or
Vooor =|[0.85,—0.40,0.02,—0.31,0.23] dog P

Semantic meaning of words Semantic relationship between words

Recap: Word2Vec

- Main idea: we want to use words to predict their context words

-« Context: a fixed window of size m
Use center word w; to predict context words wy_,,, t0 Weym
P(Wt—Z | Wt') P(Wt+2 | Wt)

P(We—q | We) P(Weyq | We)

P(we_p | wy) P(Weip | we)

Recap: Word2Vec

T T T T T T T T T T T
_ _ — — slowest
0.5F r heiress = 041 S -7
| -
. , ~ “slower ___ _ _ - - shortest
L — P
- niece ’ 03k id ~‘shorter
I / « countess - low *
03 Ml I /" duchess- slow PRy
TéiSIEIl | ! / -
0.2 0o ! "1 - empresq SHof=
‘ I : 'l I r ;1 P 0.2F
/ /
01l o i' » madam ;1 i
Iy | I / / ’I/
l elr / 7 B
ok | neleew : !y | 0.1
| I / / A
| 1 : woman y learf!
-0.1+ | uncle i f rqu 3] ol SSwshaer = — — — — —
Lbrother I / I /duke , ~ stronger — — — - strongest
-0.2f I / [- Y
/ / - o - Euﬂe? ———————————— - loudest
| / | ‘emperor strong ¢ L
-0.3F / f . -01f Ioud;._ _____
;’ / [‘o Clearer =~ = = = = = = — — — — — _ — clearest
- i ~softer = — — — — — — _ _ _ _
S I I | et — — — = softest
! {sir | 02+ | - e =
i - clear <~ .~ darker — — — — — — _ _ _
05} man tking . soft " o~ = — — darkest
~
1 1 1 1 | 1 | 1 | 1 1 dark‘/

-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5

Tokenization

- Currently, we use word (and punctuation) as the basic unit to tokenize a
text

« | like this movie so much. = | + like + this + movie + so + much +.

What is the size of word embeddings (how many words)?

Size of Vocabulary

- The larger, the better?
« Storage? Computation?
- Do we need to consider all the words?

« zcvahu
o #5/\&*
- Low frequency words

Unknown Token

We create an unknown token for all the words that have never been seen
or low frequency words

« <UNK>
<UNK> has its own embedding

« | like this movie &*# so much =2 | + like + this + movie + <UNK> + so + much +.

« | like this movie sooooo much. =2 | + like + this + movie + <UNK> + much +.

We can reduce the size of vocabulary
We can handle unseen words

s There A Better Way?

- We can guess the meaning of some unknown words
* SO000000
- taaaasty
- Transformerify
- Some words share the same prefix or suffix
- happy, happier, happiest
e drive, driving, driven
 unlikely, unhappy, unhealthy

« beautiful, trustful, grateful

10

Subword Tokenization

- We use subword (and punctuation) as the basic unit to tokenize a text
- Subword: parts of words

- happy, happier, happiest: happ-, -y, -ier, -iest

- drive, driving, driven: driv-, -e, -ing, -en

 beautiful, trustful, grateful: -ful

11

Byte-Pair Encoding

- Byte-Pair Encoding (BPE) is a simple method to decide subword
 Originally designed for compression
- Use fewer subwords to cover more words
- Motivation: discover the most common pair of consecutive bytes of data
- Start with a vocabulary containing only characters and a “end-of-word” symbol

- Find the most common pair of adjacent characters “x” and “y”; add subword
“xy” to the vocabulary

- Replace instances of the character pair with the new subword; repeat until
desired vocabulary size

12

Byte-Pair Encoding Example

- Start with a vocabulary containing only characters and a “end-of-word”

symbol

s 3 =
H-® O O

End-of-word symbol
w‘</w>‘
wer </w>

w e s t </w>
d e s t </w>

5 times
2 times
6 times
3 times

Vocabulary

</w>1 o w e
rns t i1d

13

Byte-Pair Encoding Example

- Find the most common pair of adjacent characters “x” and “y”; add
subword “xy” to the vocabulary

s 3 =
H-® O O

7 times

w </w>

w e r </w>

W e S
d e s

S times

t </w>
t </w>

9 times

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

eSS

14

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

s 35 -
H- D O O
Q. = = =

</w>

e r </w>
es t </w>
es t </w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

eSS

15

Byte-Pair Encoding Example

- Find the most common pair of adjacent characters “x” and “y”; add
subword “xy” to the vocabulary

s 35 -
H- D O O
Q. = = =

</w>

e r </w>
es t </w>
es t </w>

S times

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est

16

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

s 35 -
H- D O O
Q. = = =

</w>

e r </w>
est </w>
est </w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est

17

Byte-Pair Encoding Example

- Find the most common pair of adjacent characters “x” and “y”; add
subword “xy” to the vocabulary

s 35 -
H- D O O
Q. = = =

</w>

e r </w>
est </w>
est </w>

S times

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

18

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

s 35 -
H- D O O
Q. = = =

</w>

e r </w>
est</w>
est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

19

Byte-Pair Encoding Example

- Find the most common pair of adjacent characters “x” and “y”; add
subword “xy” to the vocabulary

7 times

s 85 H

H- D O

Q = = =

</w>

e r </w>
est</w>
est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
1o

20

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

lo w </w>

lo w e r </w>
n e w est</w>
w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
1o

21

Byte-Pair Encoding Example

- Find the most common pair of adjacent characters “x” and “y”; add
subword “xy” to the vocabulary

7 times

lo w </w>

lo w e r </w>
n e w est</w>
w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

lo low

22

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

low </w>

low e ¥ </w>
n e w est</w>
w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

lo low

23

Byte-Pair Encoding Example

» Find the most common pair of adjacent characters “x” and “y”; add

subword “xy” to the vocabulary

low </w> 5 times
low e r </w> 2 times
6times N e w est</w> 6 times
w i d est</w> 3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

lo low ne

24

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

low </w>

low e ¥ </w>
ne w est</w>
w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

lo low ne

25

Byte-Pair Encoding Example

» Find the most common pair of adjacent characters “x” and “y”; add

subword “xy” to the vocabulary

low </w> 5 times
low e r </w> 2 times
6times ne w est</w> 6 times
w i d est</w> 3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

lo low ne new

26

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

low </w>

low e ¥ </w>
new est</w>

w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>

lo low ne new

27

Byte-Pair Encoding Example

- Find the most common pair of adjacent characters “x” and “y”; add
subword “xy” to the vocabulary

low </w>

low e r </w>
6times new est</w>

w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new

newest</w>

28

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

low </w>

low e ¥ </w>
newest</w>

w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new

newest</w>

29

Byte-Pair Encoding Example

» Find the most common pair of adjacent characters “x” and “y”; add

subword “xy” to the vocabulary

Stimes low </w> 5 times
low e r </w> 2 times
newest</w> 6 times
w i d est</w> 3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new
newest</w>
low</w>

30

Byte-Pair Encoding Example

- Replace instances of the character pair with the new subword

low</w>

low e ¥ </w>
newest</w>

w 1 d est</w>

5 times
2 times
6 times
3 times

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new
newest</w>
low</w>

31

Byte-Pair Encoding Example
MERGES

e + s => eS8

es + t => est

est + </w> => est</w>

1 + o => 10

lo + w => low

n + e => ne

ne + w => new

new + est</w> => newest</w>
low + </w> => low</w>

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new
newest</w>
low</w>

32

Byte-Pair Encoding Example
MERGES

e + s => eS8

es + t => est

est + </w> => est</w>

1 + o => 10

lo + w => low

n + e => ne

ne + w => new

new + est</w> => newest</w>
low + </w> => low</w>

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new
newest</w>
low</w>

New unseen token: lowest 2 low est</w>

33

Byte-Pair Encoding Example
MERGES

e + s => eS8

es + t => est

est + </w> => est</w>

1 + o => 10

lo + w => low

n + e => ne

ne + w => new

new + est</w> => newest</w>
low + </w> => low</w>

Vocabulary

</w> 1 o w e
rns t i1d

es est est</w>
lo low ne new
newest</w>
low</w>

New unseen token: powest 2 <UNK> o w est</w>

34

Subword Tokenization

- We use subword (and punctuation) as the basic unit to tokenize a text
- Subword: parts of words

- happy, happier, happiest: happ-, -y, -ier, -iest

- drive, driving, driven: driv-, -e, -ing, -en

 beautiful, trustful, grateful: -ful

- A more effective way to construct vocabulary

35

Lecture Plan

- Tokenization
- Subwords
- Byte-Pair Encoding
- Language Models
« Definition of Language Models
« N-Gram Language Models
- Language Model Decoding Methods
- Neural Language Models

36

What are Language Models?

- A probabilistic model of a sequence of words

- Evaluate the probability of whether a text is acceptable

- How likely are the following sentences?

The dog is barking at the stranger in the yard.
Yesterday, | went to the park and saw a group of children playing soccer.
The sky colorful because painted an artist.
Cats upon they chairs sleeping their dreams fall.

Plorp zix flanned the quibble through treemunk.

37

Language Models

- Learn the probability distribution over texts x = [wy,w,, ...,w;] € X

P(x) = P(wy,wy, ...,Ww;)

The dog is barking at the stranger in the yard.

What’s up? /
\

4
<

| love dogs.

Sample Space X
(Finite pieces of text)

Large language models are amazing. 7 \

I love natural language processing. Yesterday, | went to the park and saw a group of

children playing soccer.

38

What Can Language Models Do?

« Score texts

P(The dog is barking at the stranger in the yard.)
P(Cats upon they chairs sleeping their dreams fall.)

« Generate texts

X ~P(X)

— High
- Low

39

Auto-Regressive Language Models

P(wy,wy,ws, ..., w;) = P(wy)P(Wy, Ws, ..., Wi |wy)

— P(Wl)P(WZ Wl)(WSJ ""WZ|W1)W2)

= P(w1) P(Wy|w1)P(W3|wy, wp)(Wy, .., wi Wy, wy, wi)

l
_ 1_[P (W;| Wy, Woy oro, Wy_1)
=1

P(She likes to go hiking) = P(She) - P(likes|She) - P(to|She likes)
- P(go|She likes to) - P(hiking|She likes to go)

40

Auto-Regressive Language Models

l
P(Wl, Wy, W3, ""Wl) — l_IP(Wilwl, W», ""Wi—l)

=/

Next Token

N

Context

Next token prediction problem based on context

Challenge: How to predict P(w;|w{, Wy, ..., W;_1)?

41

Unigram Language Models

Assumption: P(w;|wy, Wy, ..., w;_1) = P(w;)

P(wy,wy,ws, ...,w;) = P(w;)P(wy)P(ws3) ... P(w;)
Similar to the concept of bag-of-words!
How to calculate P(w;)?

A count-based solution: Collect training corpus and count

Ctrain (Wi)
Zt Cerain(We)

P(w;) =

42

Bigram Language Models

Assumption: P(w;|wy, w,, ..., w;_1) = P(w;|w;_;)

P(wy, wy, w3, ..., wp) & P(w1) P(Wy|wy) P(Ws|w,) P(Wa|ws) ... P(Wi|w;_q)

The prediction of the next token depends only on the
previous token

A count-based solution: Collect training corpus and count

Ctrain (Wi— 1 Wi)
Ctrain (Wi—l)

P(w;|lwi_q) =

43

Trigram Language Models

Assumption: P(w;|wq,w,, ..., w;_1) = P(w;|lw;_,, w;_1)

P(wy, wa, w3, ..., wp) & P(w1) P(Wy|wy) P(Ws|wy, wy) P(Wa|wy, ws) . P(Wi|wy_o, wi_q)

The prediction of the next token depends on the
previous two tokens

A count-based solution: Collect training corpus and count

Cerain(Wi—2, Wi—q, w;)

Ctrain (Wi—Z» Wi_ 1)

P(wi|wi_q,w;_p) =

44

N-Gram Language Models

Assumption: P(w;|wy, Wy, ..., w;_1) = P(W;|Wi_p41) ooy Wi—1)

P(wy,wy,Ws, ..., W) = 1_[P(w;|W;_p41, e, Wi—1)
i

The prediction of the next token depends on the
previous n tokens

A count-based solution: Collect training corpus and count

Ctrain (Wi—n+1: ey Wiq, Wi)

Ctrain (Wi—n+1: ey Wi—l)

P(Wilwi—n+1' ""Wi—l) =

45

How to Evaluate Language Models?

A good language model should assign higher probability to typical,
grammatically correct sentences

Train a language model on a suitable training corpus

- Assumption: observed sentences = good sentences

Test on different, unseen corpus

- The higher probability that the language model assigns to the test set, the
better (why?)

Evaluation metric: Perplexity

46

Perplexity (PPL)

For a corpus X with sentences {x4, x5, ...
n
Likelihood P(X) = HP(xi)
i=1
n
Log-Likelihood log P(X) = 2 log P(x;)
i=1
1 n
Per-Word Log-Likelihood WLL(X) = WE log P(x;)
i=1

/

The number of words
in the test corpus

) x‘n}

The higher, the better

The higher, the better

The higher, the better

47

Perplexity (PPL)

For a corpus X with sentences {x{, x5, ..., X,,}

—~WLL(X)

The lower, the better

Perplexity e

1 n
WLL(X) = W 2 log P(x;)
i=1 T~

Computed by language model

Unigram Language Model|

Uni L Model
P(Wj|W1, Wz, ""Wj—l) ~ P(W]) Nnigram Language Ivioae

1
P(x) = HP(WJ-) WLL(X) = WZ Z log P(w;)
j

Minimizing perplexity =2 maximizing probability of corpus

48

Perplexity (PPL

125

100
Zaremba et al. (2014) - LSTM (large)

75

Recurrent-highway networks

AWD-LSTM™-continuous cache pointer

50 GL-LWGG+ AWD-MoS-LSTM + dynamic eval
N
B&Eg&CAS

GPT-3_(Zero-Shot
25 (ze)

TEST PERPLEXITY

2015 2016 2017 2018 2019 2020 2021

Other models -o- Models with lowest Test perplexity

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

2022

2023

2024

49

Text Generation with Language Models

Trigram Language Model

P(wy, Wy, wy, ..., wp) = HP(Wi|Wi—2»Wi—1)
i

- Generate the first word w; ~ P(w)

- Generate the second word w, ~ P(w|w;y)

- Generate the third word w3 ~ P(w|wq, w,)

- Generate the fourth word w, ~ P(w|w,, w3)

- Generate the fifth word we ~ P(w|w3, w,)

« Until the end of the sentence <eos>

50

Generation Examples

release millions See ABC accurate President of Donald Will

Unigram cheat them a CNN megynkelly experience @ these word
out- the
Bigram Thank you believe that @ ABC news, Mississippi tonight

and the false editorial | think the great people Bill Clinton

Trigram We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”

51

Different Decoding Strategies

Random Sampling ws ~ P(w|wq, w,)
Greedy Decoding W3 = drg rv{}ggp(WWsz)

Zj

e
P(w;) = softmax(z;) = .
() @) =57
Temperature Scaling z;
eT
P(w;) = softmax(z;) = 7

ZjeT

Long-Tail Word Distribution

High-Probability
Words

Probability

Low-Probability

/ Words

https://en.wikipedia.org/wiki/Long_tail

Word

53

Top-K Sampling

> wevio, P(w]“The”) = 0.68

K_/%

m———

™

0.0 -+

nice dog car woman guy man people big house «cat

P(w|“The”)

https://huggingface.co/blog/how-to-generate

szVtop_K P(’(U| “The”, “C&I‘”) —0.99

f_/%

[] [——

drives

is

turns stops down a not the

P(w

CCThe” : “CELI'”)

small

told

54

Top-P Sampl

1.0 -

2 we Vi, £ (w]|“The”) = 0.94

Ing

o —

—

0.0 -+

—

nice dog car woman guy man people big house cat

https://huggingface.co/blog/how-to-generate

P(w|“The”)

Z’wEVtop_p P(’(U‘ “The”, “C&I‘”) — 097

f_/H

[1 [——|

drives

is

turns stops down a not the

P(w|“The”, “car”)

small

told

55

Beam Search

The

Sequential sampling does not always lead to the optimal sequence

https://huggingface.co/blog/how-to-generate

56

Beam Search

-
and 0.05|

funs

0.05

wumaqﬁwﬁéﬂ

The =" house

.................................... 0.5

0.1

Sequential sampling does not always lead to the optimal sequence

https://huggingface.co/blog/how-to-generate

57

Beam Search

- Beam size m: Keep m best paths in the queue

T=1 T=2 T=3
current proposed current proposed current proposed
hypotheses extensions hypotheses extensions hypotheses extensions

i\
®
®

w o
53
Q@<
7
/s
P4
e
7
7
P /
v /
!
/
/
/
/ !
!
1
{
1
!
i
I
1
@®0

©® 0
®
®

https://distill.pub/2017/ctc/

What Can Language Models Do?

« Score texts

P(The dog is barking at the stranger in the yard.)
P(Cats upon they chairs sleeping their dreams fall.)

Generate texts

X ~P(X)

'\

— High
- Low

|

Compute perplexity

Sample from word distribution

59

N-Gram Language Models

Assumption: P(w;|wq, Wy, ..., w;_1) =& P(W;|W;_p41) o) Wi—_1)

P(wy, wy, Wy, ..., wp) = HP(Wilwi—n+1: ey Wi—q)
i

The prediction of the next token depends on the
previous n tokens

A count-based solution: Collect training corpus and count

Cerain(Wi—n+1s oo Wi—1, W;)

Ctrain (Wi—n+1: ey Wi—l)

P(Wl |Wi—n+1» ALY Wi—l) —

Any Problems?

60

Unseen Patterns in Training Corpus

Not all n-grams in the test set will be observed in training corpus

Training corpus
- | like apples

« | love bananas

Test set

| like bananas
- | love apples

This problem becomes severe when n is large

61

Laplace Smoothing

- Handle sparsity by making sure all probabilities are non-zero in our model

« Just add a to all counts and renormalize

Bigram language model before smoothing

Ctrain (Wi— 1 Wi)
Ctrain (Wi—l)

P(w;|lw;_q1) =

Bigram language model after smoothing

Cerain (Wi—l» Wi) +
Ctrain(Wi—l) + a|V|

P(Wi|Wi—1) =

62

Linear Interpolation

P(wilwi_1, wi_p) = 2, P(w;|w;_1, w;_3)
+A,P(wi|w;_1)

+A3P(w;)
z}{i =1
[

Strong empirical performance!

Trigram
Bigram

Unigram

63

N-Gram Language Models

Assumption: P(w;|wq, Wy, ..., w;_1) =& P(W;|W;_p41) o) Wi—_1)

P(wy, wy, Wy, ..., wp) = HP(Wilwi—n+1: ey Wi—q)
i

The prediction of the next token depends on the
previous n tokens

A count-based solution: Collect training corpus and count

Cerain(Wi—n+1s oo Wi—1, W;)

Ctrain (Wi—n+1: ey Wi—l)

P(Wl |Wi—n+1» ALY Wi—l) —

Can we compute the probability in a different way?

64

Neural Language Models

P(Wilwi_ny1, s Wi—q)

T Softmax

Q00000 -

Q00 000)]

!

Q00000 -

000 000)]

I

000000 -

1

Training corpus

* |like apples

* |love bananas
Test set

 |love apples

* | like bananas

65

Auto-Regressive Language Models

P(wy,wy,ws, ..., w;) = P(wy)P(Wy, Ws, ..., Wi |wy)

— P(Wl)P(WZ Wl)(WSJ ""WZ|W1)W2)

= P(w1) P(Wy|w1)P(W3|wy, wp)(Wy, .., wi Wy, wy, wi)

l
_ 1_[P (W;| Wy, Woy oro, Wy_1)
=1

P(She likes to go hiking) = P(She) - P(likes|She) - P(to|She likes)
- P(go|She likes to) - P(hiking|She likes to go)

66

Lecture Plan

- Tokenization
- Subwords
- Byte-Pair Encoding
- Language Models
« Definition of Language Models
« N-Gram Language Models
- Language Model Decoding Methods
- Neural Language Models

67

Next Lecture

The dog bites the man # The man bites the dog

wait
for
the
video
and
do

n't
rent
it

n x k representation of Convolutional layer with Max-over-1 time Fully connected layer
sentence with static and multiple filter widths and poaling with dropout and
non-static channels feature maps softmax output

Convolutional Neural Network

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://cezannec.github.io/CNN_Text_Classification/

?
30

b

v

>

@—1>—@

Recurrent Neural Network

	Slide 0: CSCE 638 Natural Language Processing Foundation and Techniques
	Slide 1: Assignment 0
	Slide 2: Assignment 1
	Slide 3: Lecture Plan
	Slide 4: Recap: Word Vectors
	Slide 5: Recap: Word2Vec
	Slide 6: Recap: Word2Vec
	Slide 7: Tokenization
	Slide 8: Size of Vocabulary
	Slide 9: Unknown Token
	Slide 10: Is There A Better Way?
	Slide 11: Subword Tokenization
	Slide 12: Byte-Pair Encoding
	Slide 13: Byte-Pair Encoding Example
	Slide 14: Byte-Pair Encoding Example
	Slide 15: Byte-Pair Encoding Example
	Slide 16: Byte-Pair Encoding Example
	Slide 17: Byte-Pair Encoding Example
	Slide 18: Byte-Pair Encoding Example
	Slide 19: Byte-Pair Encoding Example
	Slide 20: Byte-Pair Encoding Example
	Slide 21: Byte-Pair Encoding Example
	Slide 22: Byte-Pair Encoding Example
	Slide 23: Byte-Pair Encoding Example
	Slide 24: Byte-Pair Encoding Example
	Slide 25: Byte-Pair Encoding Example
	Slide 26: Byte-Pair Encoding Example
	Slide 27: Byte-Pair Encoding Example
	Slide 28: Byte-Pair Encoding Example
	Slide 29: Byte-Pair Encoding Example
	Slide 30: Byte-Pair Encoding Example
	Slide 31: Byte-Pair Encoding Example
	Slide 32: Byte-Pair Encoding Example
	Slide 33: Byte-Pair Encoding Example
	Slide 34: Byte-Pair Encoding Example
	Slide 35: Subword Tokenization
	Slide 36: Lecture Plan
	Slide 37: What are Language Models?
	Slide 38: Language Models
	Slide 39: What Can Language Models Do?
	Slide 40: Auto-Regressive Language Models
	Slide 41: Auto-Regressive Language Models
	Slide 42: Unigram Language Models
	Slide 43: Bigram Language Models
	Slide 44: Trigram Language Models
	Slide 45: N-Gram Language Models
	Slide 46: How to Evaluate Language Models?
	Slide 47: Perplexity (PPL)
	Slide 48: Perplexity (PPL)
	Slide 49: Perplexity (PPL)
	Slide 50: Text Generation with Language Models
	Slide 51: Generation Examples
	Slide 52: Different Decoding Strategies
	Slide 53: Long-Tail Word Distribution
	Slide 54: Top-K Sampling
	Slide 55: Top-P Sampling
	Slide 56: Beam Search
	Slide 57: Beam Search
	Slide 58: Beam Search
	Slide 59: What Can Language Models Do?
	Slide 60: N-Gram Language Models
	Slide 61: Unseen Patterns in Training Corpus
	Slide 62: Laplace Smoothing
	Slide 63: Linear Interpolation
	Slide 64: N-Gram Language Models
	Slide 65: Neural Language Models
	Slide 66: Auto-Regressive Language Models
	Slide 67: Lecture Plan
	Slide 68: Next Lecture

