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Assignment 1
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Lecture Plan

• Tokenization

• Subwords

• Byte-Pair Encoding

• Language Models

• Definition of Language Models

• N-Gram Language Models

• Language Model Decoding Methods

• Neural Language Models
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Recap: Word Vectors
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Map each word to a vector!

𝐯𝑔𝑟𝑒𝑎𝑡 = [0.12, 0.38, −0.91, 0.57, −0.64]

𝐯𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 = [0.16, 0.47, −0.87, 0.50, −0.55]

𝐯𝑎𝑤𝑒𝑠𝑜𝑚𝑒 = [0.08, 0.28, −0.90, 0.61, −0.54]

𝐯𝑡𝑒𝑟𝑟𝑖𝑏𝑙𝑒 = [0.92, −0.36, 0.11, −0.24, 0.14]

𝐯𝑝𝑜𝑜𝑟 = [0.85, −0.40, 0.02, −0.31, 0.23]

similarity 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2 =
𝐯𝑤𝑜𝑟𝑑1 ∙ 𝐯𝑤𝑜𝑟𝑑2

𝐯𝑤𝑜𝑟𝑑1 × 𝐯𝑤𝑜𝑟𝑑2 

Semantic meaning of words

excellent

great

dog

awesome

terrible
poor

cool

chair

Semantic relationship between words



Recap: Word2Vec

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚
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Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 



Recap: Word2Vec
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Tokenization

• Currently, we use word (and punctuation) as the basic unit to tokenize a 
text

• I like this movie so much. → I + like + this + movie + so + much + .
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What is the size of word embeddings (how many words)?



Size of Vocabulary

• The larger, the better?

• Storage? Computation?

• Do we need to consider all the words?

• zcvahu

• #$^&*

• Low frequency words
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Unknown Token

• We create an unknown token for all the words that have never been seen 
or low frequency words

• <UNK>

• <UNK> has its own embedding

• I like this movie &*# so much → I + like + this + movie + <UNK> + so + much + .

• I like this movie sooooo much. → I + like + this + movie + <UNK> + much + .

• We can reduce the size of vocabulary

• We can handle unseen words
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Is There A Better Way?

• We can guess the meaning of some unknown words 

• sooooooo

• taaaasty

• Transformerify

• Some words share the same prefix or suffix

• happy, happier, happiest

• drive, driving, driven

• unlikely, unhappy, unhealthy

• beautiful, trustful, grateful
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Subword Tokenization

• We use subword (and punctuation) as the basic unit to tokenize a text

• Subword: parts of words

• happy, happier, happiest: happ-, -y, -ier, -iest

• drive, driving, driven: driv-, -e, -ing, -en

• beautiful, trustful, grateful: -ful
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Byte-Pair Encoding

• Byte-Pair Encoding (BPE) is a simple method to decide subword

• Originally designed for compression

• Use fewer subwords to cover more words

• Motivation: discover the most common pair of consecutive bytes of data

• Start with a vocabulary containing only characters and a “end-of-word” symbol

• Find the most common pair of adjacent characters “x” and “y”; add subword 
“xy” to the vocabulary

• Replace instances of the character pair with the new subword; repeat until 
desired vocabulary size

12



Byte-Pair Encoding Example

• Start with a vocabulary containing only characters and a “end-of-word” 
symbol
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l o w </w>

l o w e r </w>

n e w e s t </w>

w i d e s t </w>

5 times
2 times
6 times
3 times

End-of-word symbol

Vocabulary

</w> l o w e

r n s t i d



9 times9 times

7 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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l o w </w>

l o w e r </w>

n e w e s t </w>

w i d e s t </w>

5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es



Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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l o w </w>

l o w e r </w>

n e w es t </w>

w i d es t </w>

5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es



9 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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l o w </w>

l o w e r </w>

n e w es t </w>

w i d es t </w>

5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est



l o w </w>

l o w e r </w>

n e w est </w>

w i d est </w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est



9 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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l o w </w>

l o w e r </w>

n e w est </w>

w i d est </w>

5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>



l o w </w>

l o w e r </w>

n e w est</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword

19

5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>



7 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

l o w </w>

l o w e r </w>

n e w est</w>

w i d est</w> lo



lo w </w>

lo w e r </w>

n e w est</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo



7 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo w </w>

lo w e r </w>

n e w est</w>

w i d est</w> lo low



low </w>

low e r </w>

n e w est</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low



6 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

low </w>

low e r </w>

n e w est</w>

w i d est</w> lo low ne



low </w>

low e r </w>

ne w est</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne



6 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

low </w>

low e r </w>

ne w est</w>

w i d est</w> lo low ne new



low </w>

low e r </w>

new est</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne new



6 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

low </w>

low e r </w>

new est</w>

w i d est</w> lo low ne new

newest</w>



low </w>

low e r </w>

newest</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne new

newest</w>



5 times

Byte-Pair Encoding Example

• Find the most common pair of adjacent characters “x” and “y”; add 
subword “xy” to the vocabulary
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

low </w>

low e r </w>

newest</w>

w i d est</w> lo low ne new

newest</w>

low</w>



low</w>

low e r </w>

newest</w>

w i d est</w>

Byte-Pair Encoding Example

• Replace instances of the character pair with the new subword
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5 times
2 times
6 times
3 times

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne new

newest</w>

low</w>



e + s => es

es + t => est

est + </w> => est</w>

l + o => lo

lo + w => low

n + e => ne

ne + w => new

new + est</w> => newest</w>

low + </w> => low</w>

Byte-Pair Encoding Example
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Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne new

newest</w>

low</w>

MERGES



e + s => es

es + t => est

est + </w> => est</w>

l + o => lo

lo + w => low

n + e => ne

ne + w => new

new + est</w> => newest</w>

low + </w> => low</w>

Byte-Pair Encoding Example

33

Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne new

newest</w>

low</w>

MERGES

New unseen token: lowest → low est</w>



e + s => es

es + t => est

est + </w> => est</w>

l + o => lo

lo + w => low

n + e => ne

ne + w => new

new + est</w> => newest</w>

low + </w> => low</w>

Byte-Pair Encoding Example
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Vocabulary

</w> l o w e

r n s t i d

es est est</w>

lo low ne new

newest</w>

low</w>

MERGES

New unseen token: powest → <UNK> o w est</w>



Subword Tokenization

• We use subword (and punctuation) as the basic unit to tokenize a text

• Subword: parts of words

• happy, happier, happiest: happ-, -y, -ier, -iest

• drive, driving, driven: driv-, -e, -ing, -en

• beautiful, trustful, grateful: -ful

• A more effective way to construct vocabulary

35



Lecture Plan

• Tokenization

• Subwords

• Byte-Pair Encoding

• Language Models

• Definition of Language Models

• N-Gram Language Models

• Language Model Decoding Methods

• Neural Language Models
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What are Language Models?

• A probabilistic model of a sequence of words

• Evaluate the probability of whether a text is acceptable

• How likely are the following sentences?

37

The dog is barking at the stranger in the yard.

Yesterday, I went to the park and saw a group of children playing soccer.

The sky colorful because painted an artist.

Cats upon they chairs sleeping their dreams fall.

Plorp zix flanned the quibble through treemunk.



Language Models

• Learn the probability distribution over texts 𝑥 = 𝑤1, 𝑤2, … , 𝑤𝑙 ∈ 𝒳

38

𝑃 𝑥 = 𝑃 𝑤1, 𝑤2, … , 𝑤𝑙

Sample Space 𝒳
(Finite pieces of text)

The dog is barking at the stranger in the yard.

What’s up?

I love natural language processing.

Large language models are amazing.

I love dogs.

Yesterday, I went to the park and saw a group of 
children playing soccer.



What Can Language Models Do?

• Score texts

39

𝑃(The dog is barking at the stranger in the yard.)

𝑃(Cats upon they chairs sleeping their dreams fall.)

→ High

→ Low

• Generate texts

෤𝑥 ~ 𝑃 𝒳



Auto-Regressive Language Models
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𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 = 𝑃 𝑤1 𝑃 𝑤2, 𝑤3, … , 𝑤𝑙|𝑤1

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1) 𝑤3, … , 𝑤𝑙|𝑤1, 𝑤2

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1, 𝑤2) 𝑤4, … , 𝑤𝑙|𝑤1, 𝑤2, 𝑤3

= ෑ

𝑖=1

𝑙

𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑃(She likes to go hiking) = 𝑃(She) ⋅ 𝑃(likes|She) ⋅ 𝑃(to|She likes)

⋅ 𝑃(go|She likes to) ⋅ 𝑃(hiking|She likes to go)



Auto-Regressive Language Models
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𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 = ෑ

𝑖=1

𝑙

𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

ContextNext Token

Next token prediction problem based on context

Challenge: How to predict 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)?



Unigram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ 𝑃 𝑤1 𝑃 𝑤2 𝑃 𝑤3 … 𝑃 𝑤𝑙

Similar to the concept of bag-of-words!

How to calculate 𝑃(𝑤𝑖)?

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖)

σ𝑡 𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑡)



Bigram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ 𝑃 𝑤1 𝑃 𝑤2|𝑤1 𝑃 𝑤3|𝑤2 𝑃(𝑤4|𝑤3) … 𝑃 𝑤𝑙|𝑤𝑙−1

The prediction of the next token depends only on the 
previous token

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−1)



Trigram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ 𝑃 𝑤1 𝑃 𝑤2|𝑤1 𝑃 𝑤3|𝑤1, 𝑤2 𝑃(𝑤4|𝑤2, 𝑤3) … 𝑃 𝑤𝑙|𝑤𝑙−2, 𝑤𝑙−1

The prediction of the next token depends on the 
previous two tokens

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−2, 𝑤𝑖−1)



N-Gram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

The prediction of the next token depends on the 
previous n tokens

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)



How to Evaluate Language Models?

• A good language model should assign higher probability to typical, 
grammatically correct sentences

• Train a language model on a suitable training corpus

• Assumption: observed sentences ≈ good sentences

• Test on different, unseen corpus

• The higher probability that the language model assigns to the test set, the 
better (why?)

• Evaluation metric: Perplexity

46



Perplexity (PPL)
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𝑃 𝒳 = ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖)Likelihood The higher, the better

log 𝑃 𝒳 = ෍

𝑖=1

𝑛

log 𝑃(𝑥𝑖)Log-Likelihood The higher, the better

𝑊𝐿𝐿 𝒳 =
1

𝑊
෍

𝑖=1

𝑛

log 𝑃(𝑥𝑖)Per-Word Log-Likelihood

The number of words 
in the test corpus

The higher, the better

For a corpus 𝒳 with sentences 𝑥1, 𝑥2, … , 𝑥𝑛



Perplexity (PPL)
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𝑒−𝑊𝐿𝐿(𝒳)Perplexity The lower, the better

𝑊𝐿𝐿 𝒳 =
1

𝑊
෍

𝑖=1

𝑛

log 𝑃(𝑥𝑖)

Computed by language model

𝑃 𝑤𝑗 𝑤1, 𝑤2, … , 𝑤𝑗−1 ≈ 𝑃(𝑤𝑗)

Unigram Language Model

𝑃 𝑥 = ෑ

𝑗

𝑃(𝑤𝑗)

For a corpus 𝒳 with sentences 𝑥1, 𝑥2, … , 𝑥𝑛

𝑊𝐿𝐿 𝒳 =
1

𝑊
෍

𝑖

෍

𝑗

log 𝑃(𝑤𝑖,𝑗)

Unigram Language Model

Minimizing perplexity → maximizing probability of corpus



Perplexity (PPL)

49
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word



Text Generation with Language Models

50

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)

Trigram Language Model

• Generate the first word 𝑤1 ~ 𝑃(𝑤)

• Generate the second word 𝑤2 ~ 𝑃(𝑤|𝑤1) 

• Generate the third word 𝑤3 ~ 𝑃(𝑤|𝑤1, 𝑤2) 

• Generate the fourth word 𝑤4 ~ 𝑃(𝑤|𝑤2, 𝑤3) 

• Generate the fifth word 𝑤5 ~ 𝑃(𝑤|𝑤3, 𝑤4) 

• …

• Until the end of the sentence <eos>



Generation Examples
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Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”



Different Decoding Strategies

52

Random Sampling 𝑤3 ~ 𝑃(𝑤|𝑤1, 𝑤2) 

Greedy Decoding 𝑤3 = arg max
𝑤∈𝒱

𝑃(𝑤|𝑤1, 𝑤2)

Temperature Scaling

𝑃 𝑤𝑖 = softmax 𝑧𝑖 =
𝑒𝑧𝑖

σ𝑗 𝑒𝑧𝑗

𝑃 𝑤𝑖 = softmax 𝑧𝑖 =
𝑒

𝑧𝑖
𝑇

σ𝑗 𝑒
𝑧𝑗

𝑇



Long-Tail Word Distribution
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Word

Probability

High-Probability 
Words

Low-Probability 
Words

https://en.wikipedia.org/wiki/Long_tail



Top-K Sampling
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https://huggingface.co/blog/how-to-generate



Top-P Sampling
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https://huggingface.co/blog/how-to-generate



Beam Search

56

Sequential sampling does not always lead to the optimal sequence

https://huggingface.co/blog/how-to-generate



Beam Search
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Sequential sampling does not always lead to the optimal sequence

https://huggingface.co/blog/how-to-generate



Beam Search

• Beam size 𝑚: Keep 𝑚 best paths in the queue

58
https://distill.pub/2017/ctc/



What Can Language Models Do?

• Score texts

59

𝑃(The dog is barking at the stranger in the yard.)

𝑃(Cats upon they chairs sleeping their dreams fall.)

→ High

→ Low

• Generate texts

෤𝑥 ~ 𝑃 𝒳
Compute perplexity

Sample from word distribution 



N-Gram Language Models

60

Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

The prediction of the next token depends on the 
previous n tokens

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

Any Problems?



Unseen Patterns in Training Corpus

• Not all n-grams in the test set will be observed in training corpus

• Training corpus

• I like apples

• I love bananas

• Test set

• I like bananas

• I love apples

• This problem becomes severe when n is large

61



Laplace Smoothing

• Handle sparsity by making sure all probabilities are non-zero in our model

• Just add 𝛼 to all counts and renormalize

62

𝑃 𝑤𝑖|𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−1)

Bigram language model before smoothing

𝑃 𝑤𝑖|𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛 𝑤𝑖−1, 𝑤𝑖 + 𝛼

𝐶𝑡𝑟𝑎𝑖𝑛 𝑤𝑖−1 + 𝛼 𝒱

Bigram language model after smoothing



Linear Interpolation

63

෠𝑃 𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2 = 𝜆1𝑃 𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2

+𝜆2𝑃 𝑤𝑖|𝑤𝑖−1

+𝜆3𝑃 𝑤𝑖

෍

𝑖

𝜆𝑖 = 1

Trigram

Bigram

Unigram

Strong empirical performance!



N-Gram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

The prediction of the next token depends on the 
previous n tokens

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

Can we compute the probability in a different way?



Neural Language Models

65

𝑃 𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1

𝑤𝑖−𝑛+1 𝑤𝑖−𝑛+2 𝑤𝑖−2 𝑤𝑖−1

…

…

…

…

Softmax Training corpus

• I like apples

• I love bananas

Test set

• I love apples

• I like bananas



Auto-Regressive Language Models

66

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 = 𝑃 𝑤1 𝑃 𝑤2, 𝑤3, … , 𝑤𝑙|𝑤1

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1) 𝑤3, … , 𝑤𝑙|𝑤1, 𝑤2

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1, 𝑤2) 𝑤4, … , 𝑤𝑙|𝑤1, 𝑤2, 𝑤3

= ෑ

𝑖=1

𝑙

𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑃(She likes to go hiking) = 𝑃(She) ⋅ 𝑃(likes|She) ⋅ 𝑃(to|She likes)

⋅ 𝑃(go|She likes to) ⋅ 𝑃(hiking|She likes to go)



Lecture Plan

• Tokenization

• Subwords

• Byte-Pair Encoding

• Language Models

• Definition of Language Models

• N-Gram Language Models

• Language Model Decoding Methods

• Neural Language Models

67



Next Lecture

68
https://cezannec.github.io/CNN_Text_Classification/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Convolutional Neural Network Recurrent Neural Network

The dog bites the man ≠ The man bites the dog
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