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Lecture Plan

« Convolutional Neural Network
« Recurrent Neural Network

- Long Short-Term Memory

« Gated Recurrent Units



Recap: A General Framework for Text Classification
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- Logistic regression, neural networks, CNN, RNN, LSTM, Transformers




A Simple Approach: Averaged Embeddings + DNN
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A Simple Approach: Concatenated Embeddings + DNN
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Challenges

- Averaged Embeddings
« Lose order information
- Concatenated Embeddings

- Cannot handle various lengths



Solution 1: Capture Local Order Information

Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}
Trigram {Bob likes Alice, likes Alice very, Alice very much}
4-gram {Bob likes Alice very, likes Alice very much}

We can infer global order information from local order information



Convolutional Neural Network (CNN)

- Capture local features (N-grams)
. Filters (Kernels)

- Hierarchical feature learning
- Multiple layers



Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)

Learnable Weight (Filter) Wi1 Wiz
Filter Size = 3 W=
Wa1 Wyp
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Convolutional Neural Network (CNN)

Dimension 1
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Dimension 3

Dimension 4

Learnable Weight (Filter) Wi1 Wiz Wis
Filter Size = 3 W=
Wa1 Wap Wa3
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Convolutional Neural Network (CNN)

Learnable Weight (Filter) Wi1 Wiz W3 Wii Wiz Wig3 Wi1 Wiz Wig3
Cilter Size = 3 w=1| .. w=]| - wl w=1 ..

Wa1 Wap Wa3 Wa1 Wap Was Wa1 Wap Wys

Alice treats Bob well
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11



Convolutional Neural Network (CNN)

Filter Size=3 W =

Dimension 1
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Convolutional Neural Network (CNN)

Dimension
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From Single Layer to Multiple Layers

Learnable Weight (Layer 1) W11 Wiz Wig3 Learnable Weight (Layer 2) Wiir Wiz Wis

Filter Size =3 W= Filter Size = 3 W=| -
(Wa1 Wao Wa3 Wa1 Wap W3

Alice treats Bob well Jo) Bob thinks

Dimension 1| | 0.7 2.7 -0.1 -5.7 V14 Vs 4 Va1 Va1 V11 Vs 1
Dimension 2 8.6 -3.9 6.7 -9.8 V12 (%) U3’2 Va2 V12 V22
Dimension 3 -2.4 -5.6 1.5 -1.6 V1,3 V2,3 V3,3 V43 V13 Y23
Dimension 4 2.3 1.1 2.0 -1.0 V14 V3 4 V34 Vg4 V1,4 V2,4

Capture high-order or hierarchical information



Convolutional Neural Network (CNN)

Capture local features (N-grams)

. Filters (Kernels)

Hierarchical feature learning
- Multiple layers

The whole process is still not similar to how human read texts

Can we model reading texts in a sequential way?
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Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory

- Read = update memory

-

Memory

Update

the cats are cute

Read
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Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory

- Read = update memory
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Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory
- Read = update memory
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Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory

- Read = update memory
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Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory
- Read = update memory
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Recurrent Neural Network (RNN)

« Recurrent unit Update W, b

Learnable parameters
Hidden state ht Memory P

( )

0y W, b

U

QOO+ 000)
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Recurrent Neural Network (RNN)

Hidden States

N

hy =c(Whi_y +Ux, + b)

T

Activation Function
(tanh, sigmoid)

Read

/

Update
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Recurrent Neural Network (RNN)

ht — O-(Wht_l + Uxt + b)

he[O] 1 [O] 12 [O] 13 (O] ha[O] hs[O
O—O—O—0—0—1O
S A s i
x1 | O x26 x3 | O x46 X5 8 C
O @) O O Leg(y,5) = — -logP(y = c| x
Q Q Q Q Q Y, y) ;y gP(y )
All the cats are cute
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Recurrent Neural Network (RNN)

- Advantages

- Can process any length input

- Model size doesn’t increase for longer input context

- Computation for step t can (in theory) use information from many steps back
- Disadvantages

- Recurrent computation is slow

 In practice, difficult to access information from many steps back

- Vanishing gradient

24



Back-Propagation
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Vanishing Gradient Problem
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When these are small, the gradient signal gets smaller and smaller as it back-propagates further

Model weights are updated only with respect to short-term effect rather than long-term effect
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Long Short-Term Memory (LSTM)

- Short-term memory: hidden state h;

- Long-term memory: cell state ¢;

- Keyidea
- Turn multiplication into addition (partially reduce gradient vanishing)
. use gates to control how much information to add/erase
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Recurrent Neural Network (RNN)

A
~ T\f N
—> ( >
A L5
\, J AN

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

&) &

hy =c(Wh,_{ + Ux; + b)

28



Long Short-Term Memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)

The cell state stores long-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)

1

Ganh
Oy 9

The hidden state stores short-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)

Ci_1 Ct

The cell state stores long-term information

Whenever reading a word, we will write/forget information to the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)

Update cell state

/

Co =fe*Ceq + 1t

How much we should erase

/ What we should write
* C,

>

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

How much we should write
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Long Short-Term Memory (LSTM)

it <
Cy
hi—1

New information €, = tanh(W©h,_; + UOx, + b)) What we should write

Input gate i; = O'(W(i)ht_l +UWx, + b(i)) How much we should write

T~

Sigmoid function: gate
values are between O and 1
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Long Short-Term Memory (LSTM)

fe

Tt

Forget gate [t = O'(W(f)ht_l +UDx, + b(f))

AN

Sigmoid function: gate
values are between 0 and 1

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

How much we should erase
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Long Short-Term Memory (LSTM)

Update cell state

/

Co =fe*Ceq + 1t

How much we should erase

/ What we should write
* C,

>

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

How much we should write
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Long Short-Term Memory (LSTM)

he 1 hy

I

0; = O'(W(O)ht_l +U@x, + b(o))
Update hidden state
h; = o; * tanh(C;)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)

Uninterrupted gradient flow
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The addition is the key

LSTM does not guarantee that there is no vanishing gradient
but it does provide an easier way to learn long-distance dependencies

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN vs. LSTM
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Gated Recurrent Units (GRU)

« Simplify 3 gates to 2 gates
- Reset gate and update gate
- No explicit cell state

- More training-efficient
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Gated Recurrent Units (GRU)

Reset gate

Update gate

New hidden state

Ty = O'(W(T)ht_l + UMx, + b(’"))

Z; = tanh(W(z)ht_l + U@ x, + b(z))

h, = tanh(W(r; * hy_;) + Ux, + b)

he =1 —2z) *he_q + 2% hy

~._

Merge input and forget gate
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Multi-Layer RNN (Stacked RNN)

|

EOQTEQQLQQQ

@%OIM%QIWQQ
@%OT@%QT@@Q
@%OIM%QIWQQ
@%@T@%@T@@Q
i

the cats are cute

All

42



Bidirectional RNN
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Lecture Plan

« Convolutional Neural Network
« Recurrent Neural Network

- Long Short-Term Memory

« Gated Recurrent Units
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