
Lecture 5: Convolutional Neural Network and Recurrent Neural Network

CSCE 638 Natural Language Processing
Foundation and Techniques

Spring 2026

(Some slides adapted from Chris Manning, Abigail See, Karthik Narasimhan, and Danqi Chen)

Kuan-Hao Huang

Lecture Plan

• Convolutional Neural Network

• Recurrent Neural Network

• Long Short-Term Memory

• Gated Recurrent Units

1

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification

2

• Teach the model how to make prediction 𝑦

• Logistic regression, neural networks, CNN, RNN, LSTM, Transformers

A Simple Approach: Averaged Embeddings + DNN

3

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

-0.6

0.4

-1.6

1.1

Any problems?

ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

A Simple Approach: Concatenated Embeddings + DNN

4

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Any problems?
ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-5.7

-9.8

-1.6

-1.0

…

Challenges

• Averaged Embeddings

• Lose order information

• Concatenated Embeddings

• Cannot handle various lengths

5

Solution 1: Capture Local Order Information

6

Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}

Trigram {Bob likes Alice, likes Alice very, Alice very much}

4-gram {Bob likes Alice very, likes Alice very much}

We can infer global order information from local order information

Convolutional Neural Network (CNN)

• Capture local features (N-grams)

• Filters (Kernels)

• Hierarchical feature learning

• Multiple layers

7

Convolutional Neural Network (CNN)

8

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

𝑤1,1*0.7 + 𝑤1,2*2.7 + 𝑤1,3*-0.1

𝑣1,1

𝑣1,2

𝑣1,3

𝑣1,4

Learnable Weight (Filter)
Filter Size = 3 𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝑤2,1*8.6 + 𝑤2,2*-3.9 + 𝑤2,3*6.7

𝑤3,1*-2.4 + 𝑤3,2*-5.6 + 𝑤3,3*1.5

𝑤4,1*2.3 + 𝑤4,2*1.1 + 𝑤4,3*2.0

+

+

+

𝑣1

Convolutional Neural Network (CNN)

9

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Learnable Weight (Filter)
Filter Size = 3

𝑤1,1*2.7 + 𝑤1,2*-0.1 + 𝑤1,3*-5.7

𝑣2,1

𝑣2,2

𝑣2,3

𝑣2,4

𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝑤2,1*-3.9 + 𝑤2,2*6.7 + 𝑤2,3*-9.8

𝑤3,1*-5.6 + 𝑤3,2*1.5 + 𝑤3,3*-1.6

𝑤4,1*1.1 + 𝑤4,2*2.0 + 𝑤4,3*-1.0

+

+

+

𝑣2

𝑣1,1

𝑣1,2

𝑣1,3

𝑣1,4

+

+

+

𝑣1

Convolutional Neural Network (CNN)

10

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Learnable Weight (Filter)
Filter Size = 3 𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

thinksBobso

𝑣2,1

𝑣2,2

𝑣2,3

𝑣2,4

+

+

+

𝑣2

𝑣1,1

𝑣1,2

𝑣1,3

𝑣1,4

+

+

+

𝑣1

𝑣4,1

𝑣4,2

𝑣4,3

𝑣4,4

+

+

+

𝑣4

𝑣3,1

𝑣3,2

𝑣3,3

𝑣3,4

+

+

+

𝑣3

𝑣5,1

𝑣5,2

𝑣5,3

𝑣5,4

+

+

+

𝑣5
Max Pooling

𝑣

Convolutional Neural Network (CNN)

11

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Learnable Weight (Filter)
Filter Size = 3 𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝑣

𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝑣 𝑣

Convolutional Neural Network (CNN)

12

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Filter Size = 3 𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝐖 =

𝑤1,1 𝑤1,2

… …
𝑤4,1 𝑤4,2

Filter Size = 2 𝐖 =

𝑤1,1 … 𝑤1,4

… … …
𝑤4,1 … 𝑤4,4

Filter Size = 4

𝑤1,1*0.7 + 𝑤1,2*2.7

𝑣 𝑣 𝑣

𝑤2,1*8.6 + 𝑤2,2*-3.9 + 𝑤2,3*6.7 + 𝑤2,4*-9.8

Convolutional Neural Network (CNN)

13

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

𝑣 𝑣 𝑣 𝑣 𝑣 𝑣

ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

From Single Layer to Multiple Layers

14

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Learnable Weight (Layer 1)
Filter Size = 3 𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

thinksBobso

𝑣2,1

𝑣2,2

𝑣2,3

𝑣2,4

𝑣1,1

𝑣1,2

𝑣1,3

𝑣1,4

𝑣4,1

𝑣4,2

𝑣4,3

𝑣4,4

𝑣3,1

𝑣3,2

𝑣3,3

𝑣3,4

𝑣1,1

𝑣1,2

𝑣1,3

𝑣1,4

𝑣2,1

𝑣2,2

𝑣2,3

𝑣2,4

𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

Learnable Weight (Layer 2)
Filter Size = 3

Capture high-order or hierarchical information

Convolutional Neural Network (CNN)

• Capture local features (N-grams)

• Filters (Kernels)

• Hierarchical feature learning

• Multiple layers

• The whole process is still not similar to how human read texts

• Can we model reading texts in a sequential way?

15

Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory

16

All the cats are cute

Memory

Read

Update

Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory

17

All the cats are cute

Memory

Read

Update

Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory

18

All the cats are cute

Memory

Read

Update

Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory

19

All the cats are cute

Memory

Read

Update

Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory

20

All the cats are cute

Memory Understanding

Read

Update

Recurrent Neural Network (RNN)

• Recurrent unit

21

Update

Memory

Read 𝑈

Hidden state ℎ𝑡

𝑊, 𝑏

𝑊, 𝑏

𝑈

Learnable parameters

Recurrent Neural Network (RNN)

22

ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏

Activation Function
(tanh, sigmoid)

ReadHidden States

Update

Recurrent Neural Network (RNN)

23

𝑥1

ℎ0 ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥4

ℎ4

𝑥5

ℎ5

All the cats are cute

ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏

ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

Recurrent Neural Network (RNN)

• Advantages

• Can process any length input

• Model size doesn’t increase for longer input context

• Computation for step t can (in theory) use information from many steps back

• Disadvantages

• Recurrent computation is slow

• In practice, difficult to access information from many steps back

• Vanishing gradient

24

Back-Propagation

25

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐖(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐖(1)

𝜕ℒ

𝜕𝐛(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐛(1)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐡(1)
=

𝜕ℒ

𝜕𝐡(2)
⋅

𝜕𝐡(2)

𝜕𝐡(1)

Vanishing Gradient Problem

26

ℎ2 = 𝜎 𝑊ℎ1 + 𝑈𝑥2 + 𝑏

ℎ3 = 𝜎 𝑊ℎ2 + 𝑈𝑥3 + 𝑏

ℎ4 = 𝜎 𝑊ℎ3 + 𝑈𝑥4 + 𝑏

ℎ5 = 𝜎 𝑊ℎ4 + 𝑈𝑥3 + 𝑏

𝜕ℒ

𝜕𝑊
=

𝜕ℒ

𝜕ℎ5
⋅

𝜕ℎ5

𝜕𝑊
+

𝜕ℒ

𝜕ℎ5
⋅

𝜕ℎ5

𝜕ℎ4
⋅

𝜕ℎ4

𝜕𝑊
+

𝜕ℒ

𝜕ℎ5
⋅

𝜕ℎ5

𝜕ℎ4
⋅

𝜕ℎ4

𝜕ℎ3
⋅

𝜕ℎ3

𝜕𝑊

+
𝜕ℒ

𝜕ℎ5
⋅

𝜕ℎ5

𝜕ℎ4
⋅

𝜕ℎ4

𝜕ℎ3
⋅

𝜕ℎ3

𝜕ℎ2
⋅

𝜕ℎ2

𝜕𝑊
+

𝜕ℒ

𝜕ℎ5
⋅

𝜕ℎ5

𝜕ℎ4
⋅

𝜕ℎ4

𝜕ℎ3
⋅

𝜕ℎ3

𝜕ℎ2
⋅

𝜕ℎ2

𝜕ℎ1
⋅

𝜕ℎ1

𝜕𝑊

When these are small, the gradient signal gets smaller and smaller as it back-propagates further

Model weights are updated only with respect to short-term effect rather than long-term effect

Long Short-Term Memory (LSTM)

• Short-term memory: hidden state ℎ𝑡

• Long-term memory: cell state 𝑐𝑡

• Key idea

• Turn multiplication into addition (partially reduce gradient vanishing)

• use gates to control how much information to add/erase

27

Recurrent Neural Network (RNN)

28
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏

Long Short-Term Memory (LSTM)

29
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

30

The cell state stores long-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

31

The hidden state stores short-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

32

The cell state stores long-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Whenever reading a word, we will write/forget information to the cell state

Long Short-Term Memory (LSTM)

33
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡Update cell state

How much we should erase How much we should write

What we should write

Long Short-Term Memory (LSTM)

34

Sigmoid function: gate
values are between 0 and 1

𝑖𝑡 = 𝜎 𝑊(𝑖)ℎ𝑡−1 + 𝑈(𝑖)𝑥𝑡 + 𝑏(𝑖) How much we should writeInput gate

ሚ𝐶𝑡 = tanh 𝑊(𝐶)ℎ𝑡−1 + 𝑈(𝐶)𝑥𝑡 + 𝑏(𝐶) What we should writeNew information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

35

Sigmoid function: gate
values are between 0 and 1

𝑓𝑡 = 𝜎 𝑊(𝑓)ℎ𝑡−1 + 𝑈(𝑓)𝑥𝑡 + 𝑏(𝑓) How much we should eraseForget gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

36
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡Update cell state

How much we should erase How much we should write

What we should write

Long Short-Term Memory (LSTM)

37

Update hidden state
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

𝑜𝑡 = 𝜎 𝑊(𝑜)ℎ𝑡−1 + 𝑈(𝑜)𝑥𝑡 + 𝑏(𝑜)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

38
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Uninterrupted gradient flow

The addition is the key

LSTM does not guarantee that there is no vanishing gradient
but it does provide an easier way to learn long-distance dependencies

RNN vs. LSTM

39
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏

RNN LSTM

𝑖𝑡 = 𝜎 𝑊(𝑖)ℎ𝑡−1 + 𝑈(𝑖)𝑥𝑡 + 𝑏(𝑖)

ሚ𝐶𝑡 = tanh 𝑊(𝐶)ℎ𝑡−1 + 𝑈(𝐶)𝑥𝑡 + 𝑏(𝐶)

𝑓𝑡 = 𝜎 𝑊(𝑓)ℎ𝑡−1 + 𝑈(𝑓)𝑥𝑡 + 𝑏(𝑓)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

𝑜𝑡 = 𝜎 𝑊(𝑜)ℎ𝑡−1 + 𝑈(𝑜)𝑥𝑡 + 𝑏(𝑜)

Gated Recurrent Units (GRU)

• Simplify 3 gates to 2 gates

• Reset gate and update gate

• No explicit cell state

• More training-efficient

40

Gated Recurrent Units (GRU)

41

𝑟𝑡 = 𝜎 𝑊(𝑟)ℎ𝑡−1 + 𝑈(𝑟)𝑥𝑡 + 𝑏(𝑟)Reset gate

𝑧𝑡 = tanh 𝑊(𝑧)ℎ𝑡−1 + 𝑈(𝑧)𝑥𝑡 + 𝑏(𝑧)Update gate

෨ℎ𝑡 = tanh(𝑊 𝑟𝑡 ∗ ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
New hidden state

ℎ𝑡 = 1 − 𝑧𝑡 ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ෨ℎ𝑡

Merge input and forget gate

Multi-Layer RNN (Stacked RNN)

42

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

All the cats are cute

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

Bidirectional RNN

43

ℎ0

𝑥1

ℎ1

All

𝑥2

ℎ2

the

𝑥3

ℎ3

cats

𝑥4

ℎ4

are

𝑥5

ℎ5

cute

ℎ0ℎ5 ℎ4 ℎ3 ℎ2 ℎ1

Lecture Plan

• Convolutional Neural Network

• Recurrent Neural Network

• Long Short-Term Memory

• Gated Recurrent Units

44

	Slide 0: CSCE 638 Natural Language Processing Foundation and Techniques
	Slide 1: Lecture Plan
	Slide 2: Recap: A General Framework for Text Classification
	Slide 3: A Simple Approach: Averaged Embeddings + DNN
	Slide 4: A Simple Approach: Concatenated Embeddings + DNN
	Slide 5: Challenges
	Slide 6: Solution 1: Capture Local Order Information
	Slide 7: Convolutional Neural Network (CNN)
	Slide 8: Convolutional Neural Network (CNN)
	Slide 9: Convolutional Neural Network (CNN)
	Slide 10: Convolutional Neural Network (CNN)
	Slide 11: Convolutional Neural Network (CNN)
	Slide 12: Convolutional Neural Network (CNN)
	Slide 13: Convolutional Neural Network (CNN)
	Slide 14: From Single Layer to Multiple Layers
	Slide 15: Convolutional Neural Network (CNN)
	Slide 16: Recurrent Neural Network (RNN)
	Slide 17: Recurrent Neural Network (RNN)
	Slide 18: Recurrent Neural Network (RNN)
	Slide 19: Recurrent Neural Network (RNN)
	Slide 20: Recurrent Neural Network (RNN)
	Slide 21: Recurrent Neural Network (RNN)
	Slide 22: Recurrent Neural Network (RNN)
	Slide 23: Recurrent Neural Network (RNN)
	Slide 24: Recurrent Neural Network (RNN)
	Slide 25: Back-Propagation
	Slide 26: Vanishing Gradient Problem
	Slide 27: Long Short-Term Memory (LSTM)
	Slide 28: Recurrent Neural Network (RNN)
	Slide 29: Long Short-Term Memory (LSTM)
	Slide 30: Long Short-Term Memory (LSTM)
	Slide 31: Long Short-Term Memory (LSTM)
	Slide 32: Long Short-Term Memory (LSTM)
	Slide 33: Long Short-Term Memory (LSTM)
	Slide 34: Long Short-Term Memory (LSTM)
	Slide 35: Long Short-Term Memory (LSTM)
	Slide 36: Long Short-Term Memory (LSTM)
	Slide 37: Long Short-Term Memory (LSTM)
	Slide 38: Long Short-Term Memory (LSTM)
	Slide 39: RNN vs. LSTM
	Slide 40: Gated Recurrent Units (GRU)
	Slide 41: Gated Recurrent Units (GRU)
	Slide 42: Multi-Layer RNN (Stacked RNN)
	Slide 43: Bidirectional RNN
	Slide 44: Lecture Plan

