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Lecture Plan

• Convolutional Neural Network

• Recurrent Neural Network

• Long Short-Term Memory

• Gated Recurrent Units
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification
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• Teach the model how to make prediction 𝑦

• Logistic regression, neural networks, CNN, RNN, LSTM, Transformers



A Simple Approach: Averaged Embeddings + DNN
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A Simple Approach: Concatenated Embeddings + DNN
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Challenges

• Averaged Embeddings 

• Lose order information

• Concatenated Embeddings 

• Cannot handle various lengths
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Solution 1: Capture Local Order Information
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Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}

Trigram {Bob likes Alice, likes Alice very, Alice very much}

4-gram {Bob likes Alice very, likes Alice very much}

We can infer global order information from local order information



Convolutional Neural Network (CNN)

• Capture local features (N-grams)

• Filters (Kernels)

• Hierarchical feature learning

• Multiple layers
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)

12

wellBobtreatsAlice

0.7

8.6

-2.4

2.3

2.7

-3.9

-5.6

1.1

-0.1

6.7

1.5

2.0

-5.7

-9.8

-1.6

-1.0

Dimension 2

Dimension 1

Dimension 3

Dimension 4

Filter Size = 3 𝐖 =

𝑤1,1 𝑤1,2 𝑤1,3

… … …
𝑤4,1 𝑤4,2 𝑤4,3

𝐖 =

𝑤1,1 𝑤1,2

… …
𝑤4,1 𝑤4,2

Filter Size = 2 𝐖 =

𝑤1,1 … 𝑤1,4

… … …
𝑤4,1 … 𝑤4,4

Filter Size = 4

𝑤1,1*0.7   +  𝑤1,2*2.7

𝑣 𝑣 𝑣

𝑤2,1*8.6  +  𝑤2,2*-3.9 + 𝑤2,3*6.7 + 𝑤2,4*-9.8



Convolutional Neural Network (CNN)
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From Single Layer to Multiple Layers
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Convolutional Neural Network (CNN)

• Capture local features (N-grams)

• Filters (Kernels)

• Hierarchical feature learning

• Multiple layers

• The whole process is still not similar to how human read texts

• Can we model reading texts in a sequential way?
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Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory

16

All the cats are cute

Memory

Read

Update



Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory
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Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory
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Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory
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Recurrent Neural Network (RNN)

• Read texts sequentially like a human with memory

• Read → update memory
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All the cats are cute

Memory Understanding

Read

Update



Recurrent Neural Network (RNN)

• Recurrent unit

21

Update

Memory

Read 𝑈

Hidden state ℎ𝑡

𝑊, 𝑏

𝑊, 𝑏

𝑈

Learnable parameters



Recurrent Neural Network (RNN)
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ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏

Activation Function 
(tanh, sigmoid)

ReadHidden States

Update



Recurrent Neural Network (RNN)
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ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍
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Recurrent Neural Network (RNN)

• Advantages

• Can process any length input

• Model size doesn’t increase for longer input context

• Computation for step t can (in theory) use information from many steps back

• Disadvantages

• Recurrent computation is slow

• In practice, difficult to access information from many steps back

• Vanishing gradient

24



Back-Propagation
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Vanishing Gradient Problem
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When these are small, the gradient signal gets smaller and smaller as it back-propagates further

Model weights are updated only with respect to short-term effect rather than long-term effect



Long Short-Term Memory (LSTM)

• Short-term memory: hidden state ℎ𝑡 

• Long-term memory: cell state 𝑐𝑡

• Key idea

• Turn multiplication into addition (partially reduce gradient vanishing)

• use gates to control how much information to add/erase

27



Recurrent Neural Network (RNN)

28
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏



Long Short-Term Memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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The cell state stores long-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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The hidden state stores short-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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The cell state stores long-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Whenever reading a word, we will write/forget information to the cell state



Long Short-Term Memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡Update cell state

How much we should erase How much we should write

What we should write



Long Short-Term Memory (LSTM)
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Sigmoid function: gate 
values are between 0 and 1

𝑖𝑡 = 𝜎 𝑊(𝑖)ℎ𝑡−1 + 𝑈(𝑖)𝑥𝑡 + 𝑏(𝑖) How much we should writeInput gate

ሚ𝐶𝑡 = tanh 𝑊(𝐶)ℎ𝑡−1 + 𝑈(𝐶)𝑥𝑡 + 𝑏(𝐶) What we should writeNew information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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Sigmoid function: gate 
values are between 0 and 1

𝑓𝑡 = 𝜎 𝑊(𝑓)ℎ𝑡−1 + 𝑈(𝑓)𝑥𝑡 + 𝑏(𝑓) How much we should eraseForget gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡Update cell state

How much we should erase How much we should write

What we should write



Long Short-Term Memory (LSTM)
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Update hidden state
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

𝑜𝑡 = 𝜎 𝑊(𝑜)ℎ𝑡−1 + 𝑈(𝑜)𝑥𝑡 + 𝑏(𝑜)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Uninterrupted gradient flow

The addition is the key

LSTM does not guarantee that there is no vanishing gradient
but it does provide an easier way to learn long-distance dependencies



RNN vs. LSTM
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ℎ𝑡 = 𝜎 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏

RNN LSTM

𝑖𝑡 = 𝜎 𝑊(𝑖)ℎ𝑡−1 + 𝑈(𝑖)𝑥𝑡 + 𝑏(𝑖)

ሚ𝐶𝑡 = tanh 𝑊(𝐶)ℎ𝑡−1 + 𝑈(𝐶)𝑥𝑡 + 𝑏(𝐶)

𝑓𝑡 = 𝜎 𝑊(𝑓)ℎ𝑡−1 + 𝑈(𝑓)𝑥𝑡 + 𝑏(𝑓)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ሚ𝐶𝑡

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

𝑜𝑡 = 𝜎 𝑊(𝑜)ℎ𝑡−1 + 𝑈(𝑜)𝑥𝑡 + 𝑏(𝑜)



Gated Recurrent Units (GRU)

• Simplify 3 gates to 2 gates

• Reset gate and update gate 

• No explicit cell state

• More training-efficient

40



Gated Recurrent Units (GRU)

41

𝑟𝑡 = 𝜎 𝑊(𝑟)ℎ𝑡−1 + 𝑈(𝑟)𝑥𝑡 + 𝑏(𝑟)Reset gate

𝑧𝑡 = tanh 𝑊(𝑧)ℎ𝑡−1 + 𝑈(𝑧)𝑥𝑡 + 𝑏(𝑧)Update gate

෨ℎ𝑡 = tanh(𝑊 𝑟𝑡 ∗ ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
New hidden state

ℎ𝑡 = 1 − 𝑧𝑡 ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ෨ℎ𝑡

Merge input and forget gate



Multi-Layer RNN (Stacked RNN)
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

All the cats are cute

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5



Bidirectional RNN
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ℎ0

𝑥1
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All

𝑥2

ℎ2

the

𝑥3

ℎ3
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Lecture Plan

• Convolutional Neural Network

• Recurrent Neural Network

• Long Short-Term Memory

• Gated Recurrent Units
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