CSCE 689: Special Topics in Trustworthy NLP

Lecture 3: Natural Language Processing Basics (2)

Kuan-Hao Huang
khhuang@tamu.edu

i

(Some slides adapted from Chris Manning, Dan Jurafsky, Danqi Chen, and Vivian Chen)

Lecture Plan

- Natural Language Processing Basics
- Word Embeddings

- Word2Vec
- Tokenization

- Byte-Pair Encoding

Recap: How to Learn an NLP model?

- Machine learning method: supervised learning

+ Training examples D = {(x1, ¥1), (x2,¥2), -, (X1, YD }
« Learn model F: X —» U

Input Text —

Feature
Extractor

Model
Parameters

~

Update

—> Qutput Label

Recap: Human-Crafted Features

Feature Model
Extractor Parameters

¥
A 4

Input Text — Qutput Label

Input Text = A Feature Vector X = [X1, X9, X3, «., Xy, |

Bag of words (BoW) Var Definition

X1 count(positive lexicon) € doc)

it 6 . .
| 5 X2 count(negative lexicon) € doc)

I love this movie! It's sweet, _ _ the 4 PR
but with satirical humor. The fa'?{ always loveyo !t taon § g 1 if “no” € doc
dialogue is great and the whimsical it 5 X3 a
adventure scenes are fun... fﬁg,ﬁ seen dial:ﬁgnvone ;z? " 1 0 otherwise
It manages to be whimsical a dve:'tnt?ri ,ec,,,gmmend would 1
and romantic while laughing e satiical whimsical 1 x4 count(Ist and 2nd pronouns € doc)
at the conventions of the - Whi? I put 0 romogir?tic it - times 1 . i,
fairy tale genre. | would Sevel yor - : sweet 1 1 lf s ’ - dOC
recommend it to just about the 292N it the ur;;or :Ztgﬁ?:"e 1 X5)
anyone. I've seen it several i the :g:‘-lage qenre] 0 otherwise
times, and I'm always happy fun | times gng fairy 1
to see it again whenever | and ,pout ; humor 1 ()
have a friend who hasn't Wh;";ﬁ:’:r:ﬂms have "1ie have 1 X6 lOg Word count Of dOC
seen it yet! with great 1

Recap: Logistic Regression

e

Input Text ——

Feature

Extractor

Model

Parameters

- Logistic Regression for multiclass classification

Feature Vector X = [xq, X3, X3, .., Xp |

» QOutput Label

Labely =0,1,...,C —1

Weight Vectors w,.

— [Wc,li Weo,We 3, ., Wc,n]

P(y = c| x) = softmax(z,)

\

/

Z. =W X+ b,

softmax(t) =

Rias b Learnable Model
1as D¢ Parameters
Zc
Z
D e%e

Softmax Function

Recap: Word Embeddings

r ~

Feature Model
> > —
Input Text Extractor Parameters Output Label

Input Text = A Sequence of Word Vectors

goodyonderful
great

0.31 0.01 1.87\ (-3.17 1.23 nice

(—0.28) (—0.91) (0.03) (—0.18) (1.59) food

t f, . t f t . juice apple

I don’t like this movie J orange
table grape

bed chair

bad

Representing Words by Their Contexts

Distributional hypothesis: words that occur in similar contexts tend to have
similar meanings

J.R.Firth 1957

« “You shall know a word by the company it keeps”
- One of the most successful ideas of modern statistical NLP!

...government debt problems turning into banking crises as happened in 20089...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

These context words will represent banking

Distributional Hypothesis

Cl1 C2 (3
Cl: Abottleof ison the table. juice 1 1 0
C2: Everybody likes . loud 0 0 0
, _ motor-oil 1 0 0

C3: Don’t have before you drive.
chips 0 1 0
C4: | bought yesterday. choices 0 1 0
wine 1 1 1

Words that occur in similar contexts tend to have similar meanings

C4

R, O L Rk O

Word2Vec

- Efficient Estimation of Word Representations in Vector Space, 2013
« 40000+ citations

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
tmikolov@google.com kaichen@google.com
Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA

gcorrado@google.com jeff@google.com

Word2Vec: Overview

- The idea: we want to use words to predict their context words
- Context: a fixed window of size m

Use center word w; to predict context words Wy_,, t0 Wiy

P(wg_p | we) P(Weyp | W)

problems turning banking crises as

\ J \ J
1 Y l Y /

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Words that occur in similar contexts tend to have similar meanings

Word2Vec: Overview

- The idea: we want to use words to predict their context words
- Context: a fixed window of size m

Use center word w; to predict context words Wy_,, t0 Wiy

P(we_p | we) P(Weyo | W)

problems turning crises as

Y Y L Y)
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Words that occur in similar contexts tend to have similar meanings

10

Word2Vec: Likelihood

P(wi—z | wy) P(Wepo | We)

P(wi_q | W) P(Weyq | We)

problems turning banking crises as

l T o Y /
outside context words center word outside context words
in window of size 2 at position t in window of size 2

For each positiont = 1, ..., T, predict context words within a window of fixed

size m, given center word w;

0 all parameters to be optimized

/

Z

Likelihood = L(0) =

1_[{P(Wt+]~| we ; 0)

(g
Il |'ﬂ
—

—Mms<js<m,j+9

Probability over

all vocabulary V

Foreach positiont = 1, ...,T Likelihood for all context words given center word wy

11

Word2Vec: Objective Function

P(wi—z | wy) P(Wepo | We)
P(we_q | we) P(Weyq | We)

problems turning banking crises as

l T o Y /
outside context words center word outside context words
in window of size 2 at position t in window of size 2

The objective function J(0) is the (average) negative log likelihood

1
J(©) = —=log £(6) = - z > ogP(wey|we;0)

—-msj<m,j+0

We minimize the objective function (also called cost or loss function)

12

How to Define Probability?

Question: how to calculate P(WH_]" we; 0)?

Answer: we have two sets of vectors for each word in the vocabulary
u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

We consider Inner product u,, Vi, @s the score to measure how likely the
context word w, ; appears with the center word wy, the larger the more likely!

eXp(th) VWt+j)

Liev €XP(Uy, * Vi)

P(WH_]-‘ W ; 0) = 0 = {{uy}, {v,}} all parameters

13

How to Define Probability?

We have two sets of vectors for each word in the vocabulary

u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

P(Wt+j‘ Wy ;0) =

/

exp(th ’ VWt+j)

Normalize over entire vocabulary
to give probability distribution

ZkEV eXp(th) Vk)

The score to indicate how likely the context
word w; , ; appears with the center word w;

Softmax function: mapping arbitrary values to a probability distribution

softmax(t) =

e

Why Two Sets of Vectors?

We have two sets of vectors for each word in the vocabulary
u,, € R%: word vector when w is a center word

v,, € R%: word vector when w is a context word

exp(uwt ’ VWt+j)

ZkEV eXp(th) Vk)

P(Wt+j‘ Wy ;0) =

- Scores can be asymmetric
- |tis not likely that a word appears in its own context

15

How to Train Word Vectors?

Parameters: 6 = {{uk} {(vi}}

Objective function: J(8) = ——z 2 logP(WHj‘ we; 0)

1 —msj<m,j+0

Our goal: find parameters 6 that minimize the objective function J(8)

Cost

A

Solution: stochastic gradient descent (SGD)
- Randomly initialize parameters 6
For each iteration 6 «— 8 —n Vy J(0)

Learning step

Minimum

> 0

1
/ T !
Random

Learning step Gradient initial value

>

16

Warm-Up

f(x) = exp(x)
f(x) = log(x)

fx) = f1(f2(x))

fx)=x-a

T eww

df 1

E - ; Chain Rule
df L@ AL®
dx dz dx

0

a—i = d

of _|of or of

ox |0x, dx,’ " 9x,

z = fo(x)

Computing the Gradients

Objective function

1) = ——2

)

log P(WH]-‘ we; 0)

—-m<j<m,j#0

TZ

-_m=<

)

— logP(WHj‘ we; 0)

jsm,j+b

The gradients can be calculated separately!

For simplicity, we consider one pair of center/context words (o, ¢)

y = —logP(clo;0) = —log(

exp(U, - V¢)) dy dy
ZREV exp(uo) Vk)

du, Jv,

We need to compute this!

18

Computing the Gradients

exXp (uo) Vc))

Zkev eXp(uo : Vk)

y = —logP(clo) = — log(=|—log(exp(u, - v.)) i+ log (Z exp (U, ’Vk)>

kev
= —u, "V,
dlog(x) 1 dexp(x)
0x :; Z anp(uo) Vk) ox exp(x)
dy _ d(—u, - v + log(Qkey exp(u, « Vi))) I eV du,
du, du, ’ ZkEV exp(U, * Vi)
Dkey €xp(u, - Vi) Vi z exp(u, - Vi) Vi
= —V, + = -V, +
Dkey €Xp(u, - Vi) kEVZkEV exp(U, * Vi)
_ Oy
==Vc+) P(klo)vg —— = —1(k = c)u, + P(k|o)u,
keVv OV

Similar calculation step 19

Training Process

- Randomly initialize parameters u;, v;
« Walk through the training corpus and collect training data (o, ¢)

P(we—z | we) P(Weip | We)

P(we_q | we) P(Weiq | We)

problems turning banking crises as

L Y J _'_; (' [
outside context words center word outside context words
in window of size 2 at position t in window of size 2
0y dy
u, <—u, —n— Vi, —V,—n— VkeV

auo aVk

Negative Sampling

Issue: every time we get one pair of (0, ¢), we have to update v, with

all the words in the vocabulary.
dy

= Vk eV
"auo

u, < u, Vi < Vg

_ nm
Negative sampling: instead of considering all the words in V, we randomly

sample K(5-20) negative examples

exp(uo) Vc)
ZkEV exp(uo . Vk)

) - = log(exp(uo ’ Vc)) + log (Z exp(uo) Vk))

Softmax y = —log<
kev

K
Negative sampling y = —log(a(u, - v)) — Z Ej-pw)log(a(—u, - v;))
=1

1
1+e™™*

o(x) =

Continuous

Bag of Words (CBOW) vs Skip-Grams

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t-2)

w(t-1)

SUM

Hj e w

w(t+1)

N/

w(t+2)

7

CBOW Skip-gram

22

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT

T
w(t-2) L) = | |PWl{we), —m<j<m,j=#0

N t=1
w(t-1)

1
\SUM ‘_,t —_ Z Vt+j
j 2m A
L w(t) —ms<j<m,j+0
wit+ / exp(uy, * V¢)
) Pwelwes) = 5— o=
- ey €Xp(Uy + Vi)

w(t+2)

23

GloVe: Global Vectors

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

|dea: capture ratios of co-occurrence probabilities as linear meaning
components in a word vector space

Log-bilinear model Wi Wj = log P(il))
log P(x|a)
log P(x|b)

Vector difference w; + (W, — wy) =

|74
] = z £(X;;) (W W; + b; + b; — log X;;)

I,j=1 .
J \ Global co-occurrence statistics

Training faster and scalable to very large corpora!

24

FastText: Sub-Word Embeddings

Enriching Word Vectors with Subword Information (Bojanowski et al. 2017)

Similar as Skip-gram, but break words into n-grams withn=3to 6

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

where
5-grams: <wher, where, here>
6-grams: <where, where>
Replace u; - V; with z Ug - Vj

geEn—grams(w;)

Trained Word Vectors Are Available

« Word2Vec: https://code.google.com/archive/p/word2vec/

« GloVe: https://nlp.stanford.edu/projects/glove/
« FastText: https://fasttext.cc/

26

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Word Analogy Test

Word analogy
man: woman = king: ?
Paris: France = London: ?

bad: worst = cool: ?

arg mvgx(cos(uw, Uy oman — Uman + uking))

1

0.75

0.5

0.25

pa—"

man

woman

0.25

0.5

0.75

27

Visualization of Word Vectors

T T T I I I I T
0.5F r heiress 7]
I
0.4 !’ .
: niece I * countess
0.3F *aunt | /- ; duchess-
I%.istel’1 I £
/
0.2 I' [” / f/ , empress
I / /
01k by [II » madam / !, |
e (hol / f’ /
! nepHe ir r
oF I P | w / / f 1
] | / / A
-0.1F | uncle ’ ; rquean /)
L brother ! ! f /I duke
-0.2F / / I 4
| ! | //
/ emperor
03} ’ , Lemp -
I [
I / |
-0.4+ / / I 1
/ Isir [
05k !man lking]
Il | | | | | | | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

28

Word Embeddings

Feature Model
> > —
Input Text Extractor Parameters Output Label

Input Text = A Sequence of Word Vectors

goodyonderful
great

0.31 0.01 1.87\ (-3.17 1.23 nice

(—0.28) (—0.91) (0.03) (—0.18) (1.59) food

t f, . t f t . juice apple

I don’t like this movie J orange
table grape

bed chair

bad

29

Lecture Plan

- Natural Language Processing Basics
- Word Embeddings

- Word2Vec
- Tokenization

- Byte-Pair Encoding

30

Tokenization

 Currently, we use word (and punctuation) as the basic unit to tokenize a
text

« | like this movie so much. = | + like + this + movie + so + much +.

What is the size of word embeddings (how many words)?

31

Size of Vocabulary

- The larger, the better?
-« Storage? Computation?
- Do we need to consider all the words?

- zcvahu
o #S/\&*

- Low frequency words

32

Unknown Token

« We create an unknown token for all the words that have never been seen
or low frequency words

« <UNK>

« <UNK> has its own embedding
« | like this movie &*# so much =2 | + like + this + movie + <UNK> + so + much +.
« | like this movie sooooo much. =2 | + like + this + movie + <UNK> + much + .

- We can reduce the size of vocabulary
« We can handle unseen words

33

s There A Better Way?

- We can guess the meaning of some unknown words
* SO000000
« taaaasty
« Transformerify
- Some words share the same prefix or suffix
 happy, happier, happiest
- drive, driving, driven
- unlikely, unhappy, unhealthy

- beautiful, trustful, grateful

34

Subword Tokenization

- We use subword (and punctuation) as the basic unit to tokenize a text
« Subword: parts of words

-« happy, happier, happiest: happ-, -y, -ier, -iest

- drive, driving, driven: driv-, -e, -ing, -en

- beautiful, trustful, grateful: -ful

35

Next Lecture

- Natural Language Processing Basics
- Tokenization
« Byte-Pair Encoding
- Common Models
« Convolutional Neural Network (CNN)

« Recurrent Neural Network (RNN)
« Long Short-Term Memory (LSTM)

36

	Slide 0: CSCE 689: Special Topics in Trustworthy NLP
	Slide 1: Lecture Plan
	Slide 2: Recap: How to Learn an NLP model?
	Slide 3: Recap: Human-Crafted Features
	Slide 4: Recap: Logistic Regression
	Slide 5: Recap: Word Embeddings
	Slide 6: Representing Words by Their Contexts
	Slide 7: Distributional Hypothesis
	Slide 8: Word2Vec
	Slide 9: Word2Vec: Overview
	Slide 10: Word2Vec: Overview
	Slide 11: Word2Vec: Likelihood
	Slide 12: Word2Vec: Objective Function
	Slide 13: How to Define Probability?
	Slide 14: How to Define Probability?
	Slide 15: Why Two Sets of Vectors?
	Slide 16: How to Train Word Vectors?
	Slide 17: Warm-Up
	Slide 18: Computing the Gradients
	Slide 19: Computing the Gradients
	Slide 20: Training Process
	Slide 21: Negative Sampling
	Slide 22: Continuous Bag of Words (CBOW) vs Skip-Grams
	Slide 23: Continuous Bag of Words (CBOW)
	Slide 24: GloVe: Global Vectors
	Slide 25: FastText: Sub-Word Embeddings
	Slide 26: Trained Word Vectors Are Available
	Slide 27: Word Analogy Test
	Slide 28: Visualization of Word Vectors
	Slide 29: Word Embeddings
	Slide 30: Lecture Plan
	Slide 31: Tokenization
	Slide 32: Size of Vocabulary
	Slide 33: Unknown Token
	Slide 34: Is There A Better Way?
	Slide 35: Subword Tokenization
	Slide 36: Next Lecture

