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Lecture Plan

• Natural Language Processing Basics

• Word Embeddings

• Word2Vec

• Tokenization

• Byte-Pair Encoding
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Recap: How to Learn an NLP model?

• Machine learning method: supervised learning

• Training examples 𝒟 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚 , 𝑦𝑚

• Learn model 𝐹: 𝒳 → 𝒴
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Recap: Human-Crafted Features
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Input Text → A Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]



Recap: Logistic Regression

• Logistic Regression for multiclass classification
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Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛] Label 𝑦 = 0,1, … , 𝐶 − 1

𝑧𝑐 = 𝐰𝐜 ⋅ 𝐱 + 𝑏𝑐

Weight Vectors 𝐰𝑐 = [𝑤𝑐,1, 𝑤𝑐,2, 𝑤𝑐,3, … , 𝑤𝑐,𝑛] Bias 𝑏𝑐
Learnable Model 

Parameters

𝑃 𝑦 = 𝑐  𝐱) = softmax 𝑧𝑐 softmax 𝑡 =
𝑒𝑧𝑐

σ𝑐 𝑒𝑧𝑐

Softmax Function



Recap: Word Embeddings
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Input Text → A Sequence of Word Vectors

apple
orange

grape
juice

table
chairbed

good
great

wonderful

nice

bad

food



Representing Words by Their Contexts
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Distributional hypothesis: words that occur in similar contexts tend to have 
similar meanings

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking



Distributional Hypothesis
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C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: I bought ___ yesterday.

juice

C1 C2 C3 C4

1 1 0 1

loud 0 0 0 0

motor-oil 1 0 0 1

chips 0 1 0 1

choices 0 1 0 0

wine 1 1 1 1

Words that occur in similar contexts tend to have similar meanings



Word2Vec

• Efficient Estimation of Word Representations in Vector Space, 2013

• 40000+ citations
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Word2Vec: Overview

• The idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚
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Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 

Words that occur in similar contexts tend to have similar meanings



Word2Vec: Overview

• The idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚
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Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 

Words that occur in similar contexts tend to have similar meanings



Word2Vec: Likelihood

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed 
size 𝑚, given center word 𝑤𝑡
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𝜃 all parameters to be optimized

Likelihood for  all context words given center word 𝑤𝑡For each position 𝑡 = 1, … , 𝑇

= ℒ 𝜃 = ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)Likelihood

Probability over all vocabulary 𝑉 



Word2Vec: Objective Function

The objective function 𝐽(𝜃) is the (average) negative log likelihood
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𝐽 𝜃 = −
1

𝑇
log ℒ 𝜃 = −

1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

We minimize the objective function (also called cost or loss function)



How to Define Probability?

Question: how to calculate 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)?
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Answer: we have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

We consider Inner product 𝐮𝑤𝑡
∙ 𝐯𝑤𝑡+𝑗

 as the score to measure how likely the 

context word 𝑤𝑡+𝑗 appears with the center word 𝑤𝑡, the larger the more likely!

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

𝜃 = 𝐮𝑘 , 𝒗𝑘  all parameters



How to Define Probability?
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We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

The score to indicate how likely the context 
word 𝑤𝑡+𝑗  appears with the center word 𝑤𝑡

Normalize over entire vocabulary
to give probability distribution

Softmax function: mapping arbitrary values to a probability distribution

softmax 𝑡 =
𝑒𝑡

σ𝑐 𝑒𝑐



Why Two Sets of Vectors?
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We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

• Scores can be asymmetric

• It is not likely that a word appears in its own context



How to Train Word Vectors?
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𝜃 = 𝐮𝑘 , 𝒗𝑘  Parameters:

Objective function:

Our goal: find parameters 𝜃 that minimize the objective function 𝐽 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

Solution: stochastic gradient descent (SGD)

• Randomly initialize parameters 𝜃

•  For each iteration 𝜃 ⟵ 𝜃 − 𝜂 ∇𝜃 𝐽 𝜃

GradientLearning step



Warm-Up
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𝑓 𝑥 = exp(𝑥)
𝑑𝑓

𝑑𝑥
= exp(𝑥)

𝑓 𝑥 = log(𝑥)
𝑑𝑓

𝑑𝑥
=

1

𝑥

𝑓 𝑥 = 𝑓1(𝑓2(𝑥))
𝑑𝑓

𝑑𝑥
=

𝑑𝑓1(𝑧)

𝑑𝑧

𝑑𝑓2(𝑥)

𝑑𝑥
𝑧 = 𝑓2(𝑥)

Chain Rule

𝑓 𝐱 = 𝐱 ∙ 𝐚
𝜕𝑓

𝜕𝐱
= 𝐚

𝜕𝑓

𝜕𝐱
=

𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛



Computing the Gradients
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𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

For simplicity, we consider one pair of center/context words (𝑜, 𝑐)

Objective function

=
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

− log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 ; 𝜃)

The gradients can be calculated separately!

𝑦 = − log 𝑃 𝑐 𝑜 ; 𝜃) = − log
exp(𝐮𝑜 ∙ 𝐯𝑐)

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝑦

𝜕𝐮𝑜

𝜕𝑦

𝜕𝒗𝑐

We need to compute this!



= −𝐯𝑐 +
σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)
= −𝐯𝑐 + ෍

𝑘∈𝑉

exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

Computing the Gradients
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𝜕𝑦

𝜕𝐮𝑜
=

𝜕 −𝐮𝑜 ∙ 𝐯𝑐 + log σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝐮𝑜

𝑦 = − log 𝑃 𝑐 𝑜) = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐮𝑜 ∙ 𝐯𝑐

= −𝐯𝑐 +
σ𝑘∈𝑉

𝜕exp(𝐮𝑜 ∙ 𝐯𝑘)
𝜕𝐮𝑜

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐯𝑐 + ෍

𝑘∈𝑉

𝑃(𝑘|𝑜) 𝐯𝑘
𝜕𝑦

𝜕𝐯𝑘
= −1 𝑘 = 𝑐 𝐮𝑜 + 𝑃 𝑘 𝑜)𝐮𝑜

Similar calculation step

𝜕log(𝑥)

𝜕𝑥
=

1

𝑥

𝜕exp(𝑥)

𝜕𝑥
= exp 𝑥



Training Process

• Randomly initialize parameters 𝐮𝑖, 𝐯𝑖

• Walk through the training corpus and collect training data 𝑜, 𝑐
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𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
∀𝑘 ∈ 𝑉



Negative Sampling

Issue: every time we get one pair of 𝑜, 𝑐 , we have to update 𝐯𝑘 with

all the words in the vocabulary. 
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𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
∀𝑘 ∈ 𝑉

Negative sampling: instead of considering all the words in 𝑉, we randomly 
sample 𝐾(5-20) negative examples

𝑦 = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)Softmax

𝑦 = − log 𝜎 𝐮𝑜 ∙ 𝐯𝑐 − ෍

𝑖=1

𝐾

𝔼𝑗~𝑃(𝑤) log 𝜎 −𝐮𝑜 ∙ 𝐯𝑗Negative sampling

𝜎 𝑥 =
1

1 + 𝑒−𝑥



Continuous Bag of Words (CBOW) vs Skip-Grams
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Continuous Bag of Words (CBOW)
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ℒ 𝜃 = ෑ

𝑡=1

𝑇

𝑃 𝑤𝑡 𝑤𝑡+𝑗 ) , −𝑚 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 0

ത𝐯𝑡 =
1

2𝑚
෍

−𝑚≤𝑗≤𝑚,𝑗≠0

𝐯𝑡+𝑗

𝑃 𝑤𝑡 𝑤𝑡+𝑗 ) =
exp(𝐮𝑤𝑡

∙ ത𝐯𝑡)

σ𝑘∈𝑉 exp(𝐮𝑘 ∙ ത𝐯𝑡)



GloVe: Global Vectors
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GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

Idea: capture ratios of co-occurrence probabilities as linear meaning 
components in a word vector space

𝑤𝑖 ∙ 𝑤𝑗 = log 𝑃 𝑖 𝑗)Log-bilinear model

𝑤𝑖 ∙ (𝑤𝑎 − 𝑤𝑏) =
log 𝑃 𝑥 𝑎)

log 𝑃 𝑥 𝑏)
Vector difference

Training faster and scalable to very large corpora!

𝐽 = ෍

𝑖,𝑗=1

𝑉

𝑓 𝑋𝑖𝑗 𝑤𝑖
⊤ ෥𝑤𝑗 + 𝑏𝑖 + ෨𝑏𝑗 − log 𝑋𝑖𝑗

2

Global co-occurrence statistics



FastText: Sub-Word Embeddings

Enriching Word Vectors with Subword Information (Bojanowski et al. 2017)
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Similar as Skip-gram, but break words into n-grams with n = 3 to 6

where

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

5-grams: <wher, where, here>

6-grams: <where, where>

Replace 𝐮𝑖 ∙ 𝐯𝑗 with ෍

𝑔∈𝑛−𝑔𝑟𝑎𝑚𝑠(𝑤𝑖)

𝐮𝑔 ∙ 𝐯𝑗



Trained Word Vectors Are Available

• Word2Vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/
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https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


Word Analogy Test
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Word analogy

man: woman ≈ king: ? arg max
𝑤

cos(𝐮𝑤 , 𝐮𝑤𝑜𝑚𝑎𝑛 − 𝐮𝑚𝑎𝑛 + 𝐮𝑘𝑖𝑛𝑔)

Paris: France ≈ London: ?

bad: worst ≈ cool: ?



Visualization of Word Vectors
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Word Embeddings
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Input Text → A Sequence of Word Vectors

apple
orange

grape
juice

table
chairbed

good
great

wonderful

nice

bad

food



Lecture Plan

• Natural Language Processing Basics

• Word Embeddings

• Word2Vec

• Tokenization

• Byte-Pair Encoding
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Tokenization

• Currently, we use word (and punctuation) as the basic unit to tokenize a 
text

• I like this movie so much. → I + like + this + movie + so + much + .

31

What is the size of word embeddings (how many words)?



Size of Vocabulary

• The larger, the better?

• Storage? Computation?

• Do we need to consider all the words?

• zcvahu

• #$^&*

• Low frequency words

32



Unknown Token

• We create an unknown token for all the words that have never been seen 
or low frequency words

• <UNK>

• <UNK> has its own embedding

• I like this movie &*# so much → I + like + this + movie + <UNK> + so + much + .

• I like this movie sooooo much. → I + like + this + movie + <UNK> + much + .

• We can reduce the size of vocabulary

• We can handle unseen words
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Is There A Better Way?

• We can guess the meaning of some unknown words 

• sooooooo

• taaaasty

• Transformerify

• Some words share the same prefix or suffix

• happy, happier, happiest

• drive, driving, driven

• unlikely, unhappy, unhealthy

• beautiful, trustful, grateful
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Subword Tokenization

• We use subword (and punctuation) as the basic unit to tokenize a text

• Subword: parts of words

• happy, happier, happiest: happ-, -y, -ier, -iest

• drive, driving, driven: driv-, -e, -ing, -en

• beautiful, trustful, grateful: -ful
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Next Lecture
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• Natural Language Processing Basics

• Tokenization

• Byte-Pair Encoding

• Common Models

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Long Short-Term Memory (LSTM)
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