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Presentation Sign-Up

• Sign-up: https://tinyurl.com/34e27fjx

• Deadline: Friday 8/30 before lecture

• We will decide the assignment during lecture on 8/30
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https://tinyurl.com/34e27fjx


Lecture Plan
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• Natural Language Processing Basics

• Long Short-Term Memory (LSTM) for generation

• Attention mechanism

• Transformers



Recap: Convolutional Neural Network (CNN)
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Recap: Recurrent Neural Network (RNN)
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Alice treats Bob well 

Model Parameters 𝑊ℎ, 𝑊𝑒, 𝑏1

Activation Function 
(tanh, sigmoid)



Recap: Long Short-Term Memory (LSTM)
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LSTM for Classification
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LSTM for Sequential Tagging
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LSTM for Generation
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LSTM for Generation
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LSTM for Generation
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• Seq2Seq tasks are everywhere



Lecture Plan

13

• Natural Language Processing Basics

• Long Short-Term Memory (LSTM) for generation

• Attention mechanism

• Transformers



LSTM: Bottleneck
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• A single vector needs to capture all the information about source sentence

• Longer sequences can still lead to vanishing gradients



LSTM: Focus on A Particular Part When Decoding
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• Each token classification requires different part of information from source 
sentence 



Attention

• Attention provides a solution to the bottleneck problem

• Key idea: At each time step during decoding, focus on a particular part of 
source sentence
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LSTM with Attention
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Different Types of Attention
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Dot-Product Attention ℎ𝑖
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Multiplicative Attention
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Visualization of Attention
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Lecture Plan
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• Natural Language Processing Basics

• Long Short-Term Memory (LSTM) for generation

• Attention mechanism

• Transformers



Issues with LSTM

• Longer sequences can lead to vanishing gradients → It is hard to capture 
long-distance information

• Lack parallelizability
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Transformers

• Attention Is All You Need, 2017

• 130K+ citations
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Transformers for Seq2Seq

• Transformer encoder = a stack of encoder layers

• Transformer decoder = a stack of decoder layers

• No any recurrence structures

• Easy to parallelize
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Transformer Layer: Self-Attention
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Transformer Layer: Self-Attention
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Transformer Layer: Self-Attention
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Transformer Layer: Self-Attention

29我

𝑥1

很

𝑥2

喜

𝑥3

歡

𝑥4

貓

𝑥5

𝑞𝑖 = 𝑊𝑄𝑥𝑖Query

𝑘𝑖 = 𝑊𝐾𝑥𝑖Key

𝑣𝑖 = 𝑊𝑉𝑥𝑖Value

Normalized 
Attention Scores

ℎ𝑖 =

𝑖

𝛼1,𝑖𝑣𝑖Weighted Sum



Transformer Layer: Self-Attention
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Transformer Layer: Self-Attention
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Transformer Layer: Self-Attention
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Transformer Layer: Self-Attention
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Transformer Layer: Multi-Head Attention
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Transformer Layer: Nonlinearity
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Transformer Encoder

• Transformer encoder = a stack of 
encoder layers
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How about word order?



Positional Encoding
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Transformer Decoder
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Transformer Decoder
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Transformer Decoder
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Next Lecture

41

• Natural Language Processing Basics

• Transformers

• Contextualized Representations

• Pre-Training
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