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Presentation Assignment
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Lecture Plan
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• Natural Language Processing Basics

• Transformers

• Contextualized Representations

• Pre-Training
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Recap: LSTM with Attention



Recap: Self-Attention
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Recap: Positional Encoding
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Transformer For Classification – Using Encoder Only
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Transformer For Generation
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Transformer For Generation

8

𝑞𝑖 = 𝑊𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
𝑉𝑥𝑖

我

𝑥1

很

𝑥2

喜

𝑥3

歡

𝑥4

貓

𝑥5

<bos>

𝑦1

𝑞𝑖 = 𝑊′𝑗
𝑄𝑥𝑖

𝑘𝑖 = 𝑊𝑗
′𝐾𝑥𝑖

𝑣𝑖 = 𝑊𝑗
′𝑉𝑥𝑖

Cross-Attention

I



Transformer For Generation
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Transformer For Generation
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformer Encoder vs. Transformer Decoder
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Transformers

• Main architectures

• Self-attention

• Feed forward

• Positional encoding

• Transformer encoder = a stack of encoder layers

• Transformer decoder = a stack of decoder layers
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Lecture Plan
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• Natural Language Processing Basics

• Transformers

• Contextualized Representations

• Pre-Training and Fine-Tuning



Static Word Embeddings
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Static Word Embeddings

• One vector for each word type

• How about words with multiple meanings?
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Contextualized Word Embeddings

• The embeddings of a word should be conditioned on its context
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Contextualized Word Embeddings
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• Chico Ruiz made a spectacular play on Alusik’s grounder …

• Olivia De Havilland signed to do a Broadway play for Garson …

• Kieffer was commended for his ability to hit in the clutch , as well as his all-
round excellent play …

• … they were actors who had been handed fat roles in a successful play …

• Concepts play an important role in all aspects of cognition …



Contextualized Word Embeddings
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ELMo: Embeddings from Language Models

• Deep contextualized word representations, NAACL 2018

• 15K+ citations

• Key ideas

• Learning contextualized embeddings with LSTM-based language models on a 
large corpus

• Use the hidden states of the LSTMs for each token to compute a vector 
representation of each word
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Language Modeling

• Next word prediction
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Language Modeling

• Stacked LSTM
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Language Modeling

• Bi-directional language modeling
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Contextualized Word Embeddings
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Task-Specific Weights
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Lecture Plan
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• Natural Language Processing Basics

• Transformers

• Contextualized Representations

• Pre-Training



Feature-Based vs. Fine-Tuning Approaches

• Task-specific features + task-specific model

• General embeddings + task-specific model

• General embeddings + general model + task-specific fine-tuning
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Pre-Training



Pre-Training
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Goal: 
Learning Math

Read 
Math Textbooks

Goal: 
Learning Physics

Goal: 
Learning Chemistry

Read 
Physics Textbooks

Read 
Chemistry Textbooks

Math Exam

Physics Exam

Chemistry Exam

Read Everything
Textbooks, 

Novels,
Newspapers, 
Magazines, …

Goal: 
Learning Math

Continue Reading 
Math Textbooks

Goal: 
Learning Physics

Goal: 
Learning Chemistry

Continue Reading 
Physics Textbooks

Continue Reading 
Chemistry Textbooks

Math Exam

Physics Exam

Chemistry Exam

Learn from 
scratch

Pre-training Fine-tuning



Bidirectional Encoder Representations from Transformers

• BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding, NAACL 2019

• 110K+ citations

• Learn general knowledge with a large corpus

• Re-use model weights for fine-tuning
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Transformer Encoder Only
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Pre-Training Task: Masked Language Modeling
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Pre-Training Task: Next Sentence Classification
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Next Lecture
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• Natural Language Processing Basics

• Pre-Training

• Generative Pre-Training

• Language Models
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