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Lecture Plan

1

• Natural Language Processing Basics

• Pre-Training

• Language Models



Recap: Contextualized Word Embeddings

2
Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Recap: Pre-Training
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Goal: 
Learning Math

Read 
Math Textbooks

Goal: 
Learning Physics

Goal: 
Learning Chemistry

Read 
Physics Textbooks

Read 
Chemistry Textbooks

Math Exam

Physics Exam

Chemistry Exam

Read Everything
Textbooks, 

Novels,
Newspapers, 
Magazines, …

Goal: 
Learning Math

Continue Reading 
Math Textbooks

Goal: 
Learning Physics

Goal: 
Learning Chemistry

Continue Reading 
Physics Textbooks

Continue Reading 
Chemistry Textbooks

Math Exam

Physics Exam

Chemistry Exam

Learn from 
scratch

Pre-training Fine-tuning



Three Types of Pre-Training

4
Source: https://www.sciencedirect.com/science/article/pii/S2095809922006324

https://www.sciencedirect.com/science/article/pii/S2095809922006324


Encoder-Only: BERT

• BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding, NAACL 2019

• Bidirectional Encoder Representations from Transformers (BERT)

• Learn general knowledge with a large corpus

• Re-use model weights for fine-tuning
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Pre-Training Task: Masked Language Modeling
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Pre-Training Task: Next Sentence Prediction
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Source: http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Fine-Tuning: Sentence-Level Tasks
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• Pre-training provides a good weight initialization



Fine-Tuning: Token-Level Tasks
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• Pre-training provides a good weight initialization



BERT as General Contextualized Representations
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Amazing Performance
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Encoder-Only: RoBERTa

• RoBERTa: A Robustly Optimized BERT Pretraining Approach, arXiv 2019

• Robustly optimized BERT approach (RoBERTa)

• BERT is still under-trained

• Improve the robustness of training BERT
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Static Masking vs. Dynamic Masking
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• Static masking: decide masked words during data pre-processing

• Dynamic masking: decide masked words right before feeding into models



Removing Next Sentence Prediction Task
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True Byte-Pair Encoding (BPE)

• BERT: BPE with unicode characters

• Vocabulary size: 30K

• RoBERTa: BPE with bytes

• Vocabulary size: 50K
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Training Details

• Trained longer 

• 10x data

• Bigger batch sizes
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Much Better Performance Than BERT
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Three Types of Pre-Training
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Source: https://www.sciencedirect.com/science/article/pii/S2095809922006324

https://www.sciencedirect.com/science/article/pii/S2095809922006324


Encoder-Decoder: BART

• BART: Denoising Sequence-to-Sequence Pre-training for Natural Language 
Generation, Translation, and Comprehension, ACL 2020

• Bidirectional and Auto-Regressive Transformers (BART)

• Pre-training for generation tasks
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Encoder-Only vs. Encoder-Decoder
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Denoising Autoencoder
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Adding noise

Generate original input



Denoising Objective

• Token Masking

• A<mask>CD<mask>F. → ABCDEF.

• Token Deletion

• ACDF. → ABCDEF.

• Text Infilling

• A<mask>D<mask>F. → ABCDEF.

• Sentence Permutation

• FG. ABC. DE. → ABC. DE. FG.

• Document Rotation

• E. FG. ABC. D → ABC. DE. FG.
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Fine-Tuning
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Sequence-to-Sequence

X  Y   Z   T  U

Classification



Comparable Performance on Classification Tasks
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Better Performance on Generation Tasks
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Encoder-Decoder: T5

• Exploring the Limits of Transfer Learning with a Unified Text-to-Text 
Transformer, JMLR 2020

• Text-to-Text Transfer Transformer (T5)
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Convert Everything to Text-to-Text Tasks
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Unsupervised Objective
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Multi-Task Learning
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• Convert everything to text-to-text tasks

• Jointly fine-tune them together



Multi-Task Learning
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Multi-Task Learning

31



Multi-Task Learning
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Promising Results
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Three Types of Pre-Training

34
Source: https://www.sciencedirect.com/science/article/pii/S2095809922006324

https://www.sciencedirect.com/science/article/pii/S2095809922006324


Decoder-Only: GPT

• Improving Language Understanding by Generative Pre-Training, OpenAI 
2018

• Generative Pre-trained Transformer (GPT)

• Language Models are Unsupervised Multitask Learners, OpenAI 2019

• GPT-2

• Language Models are Few-Shot Learners, OpenAI 2020

• GPT-3
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Language Modeling
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• Next word prediction

• Trained with large corpus



Comparison: Masked Language Models
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Comparison: Causal Language Models
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Comparison: Seq2Seq Models
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GPT-1: Good Contextualized Representations
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GPT-2: Unsupervised Pre-Training Helps Supervised Tasks

• Larger training data, larger model size

41

Demonstrate zero-shot ability on certain tasks



GPT-3: From Fine-Tuning to Few-Shot Learning

• Even larger training data, even larger model size
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GPT-3: From Fine-Tuning to Few-Shot Learning

• Solve entirely new tasks by few-shot learning (in-context learning)
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Large Language Models
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Next Lecture

45

• Natural Language Processing Basics

• Large Language Models

• Prompting

• In-Context Learning
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