CSCE 689: Special Topics in Trustworthy NLP

Lecture 7: Natural Language Processing Basics (6)

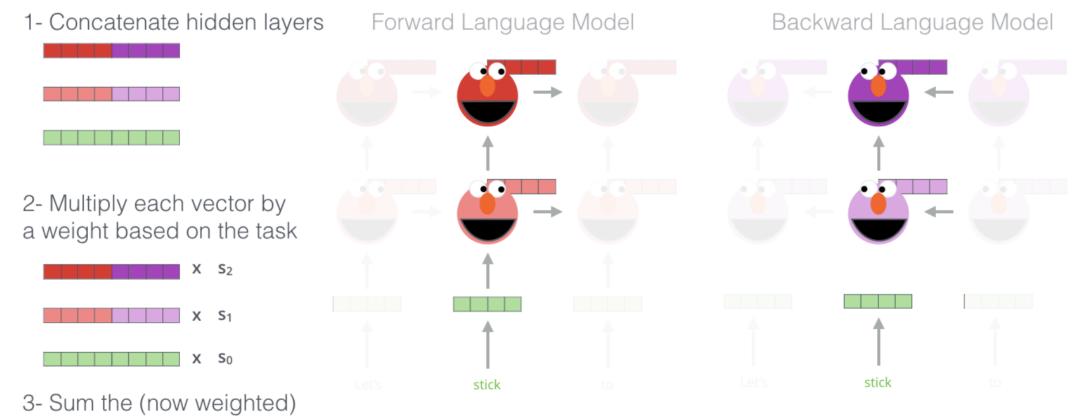
Kuan-Hao Huang khhuang@tamu.edu

(Some slides adapted from Chris Manning, Karthik Narasimhan)

Lecture Plan

- Natural Language Processing Basics
- Pre-Training
- Language Models

Recap: Contextualized Word Embeddings

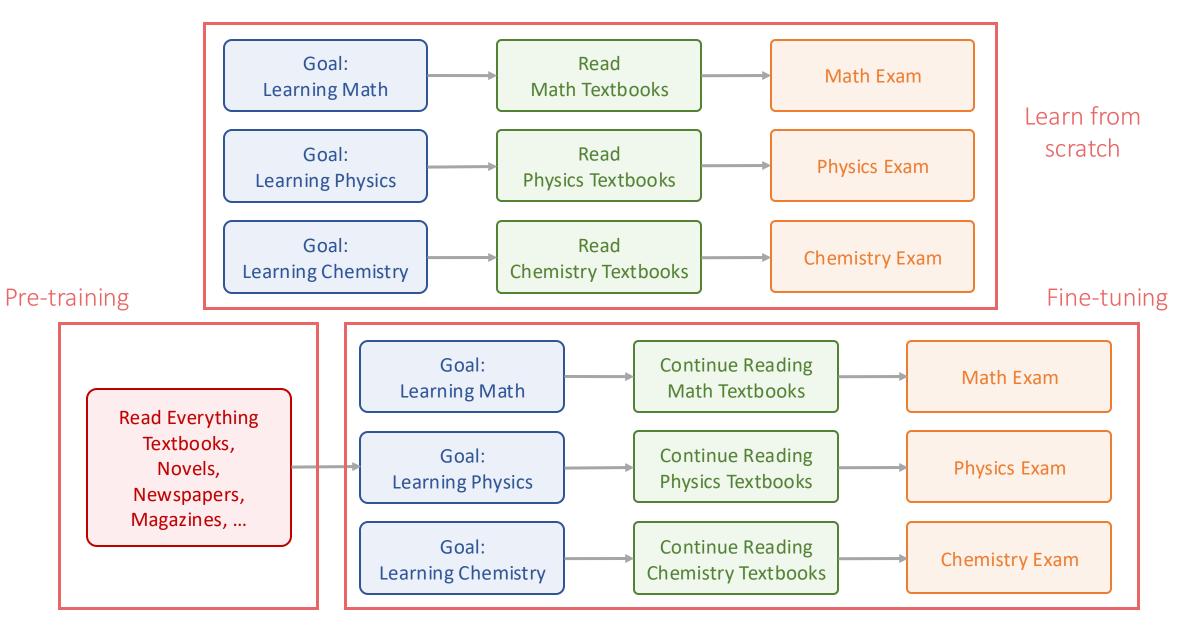


vectors

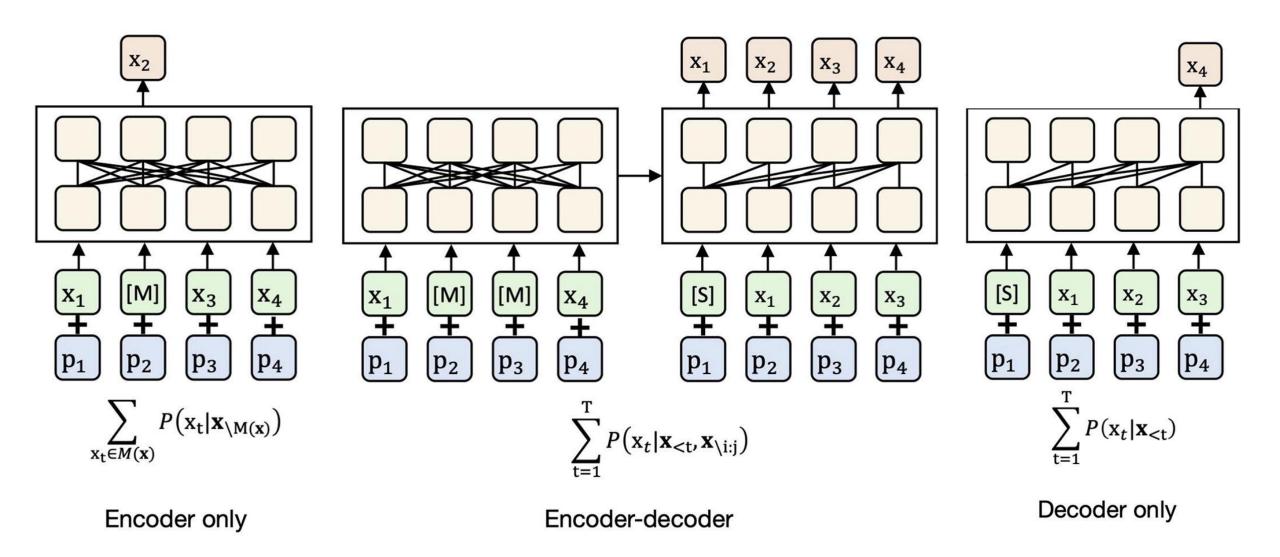
ELMo embedding of "stick" for this task in this context

2

Recap: Pre-Training



Three Types of Pre-Training



4

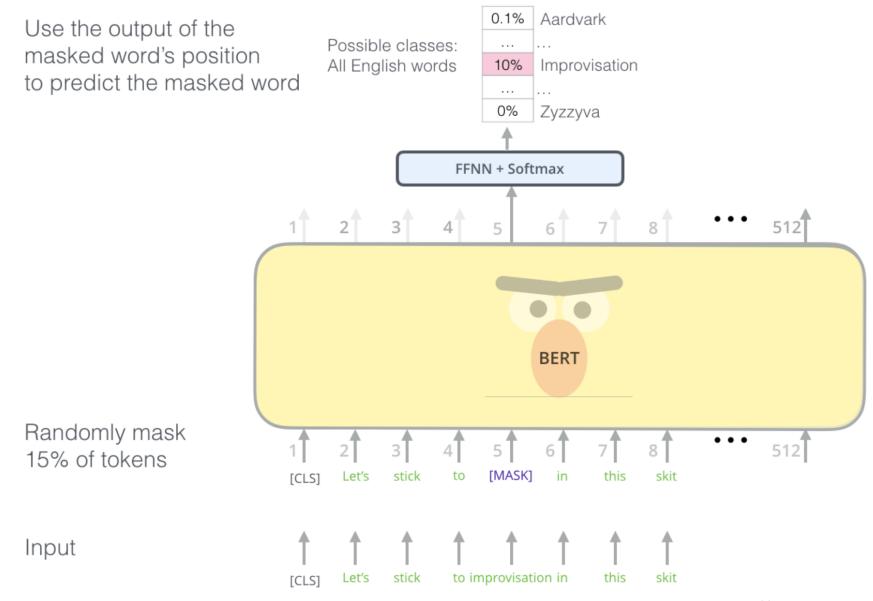
Encoder-Only: BERT

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019
 - Bidirectional Encoder Representations from Transformers (BERT)
 - Learn general knowledge with a large corpus
 - Re-use model weights for fine-tuning

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

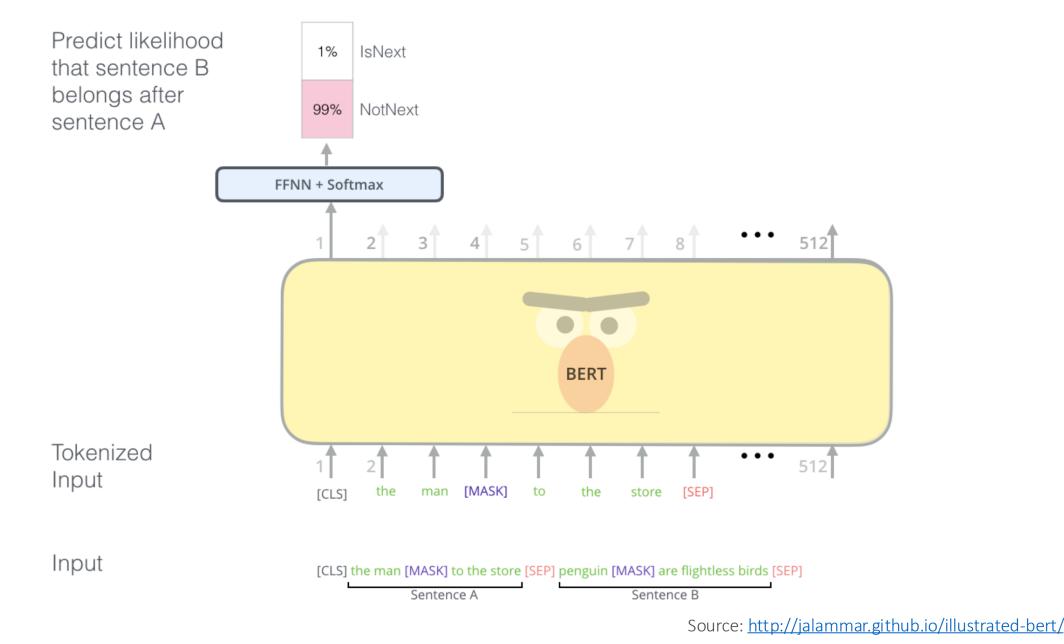
Pre-Training Task: Masked Language Modeling



6

Source: http://jalammar.github.io/illustrated-bert/

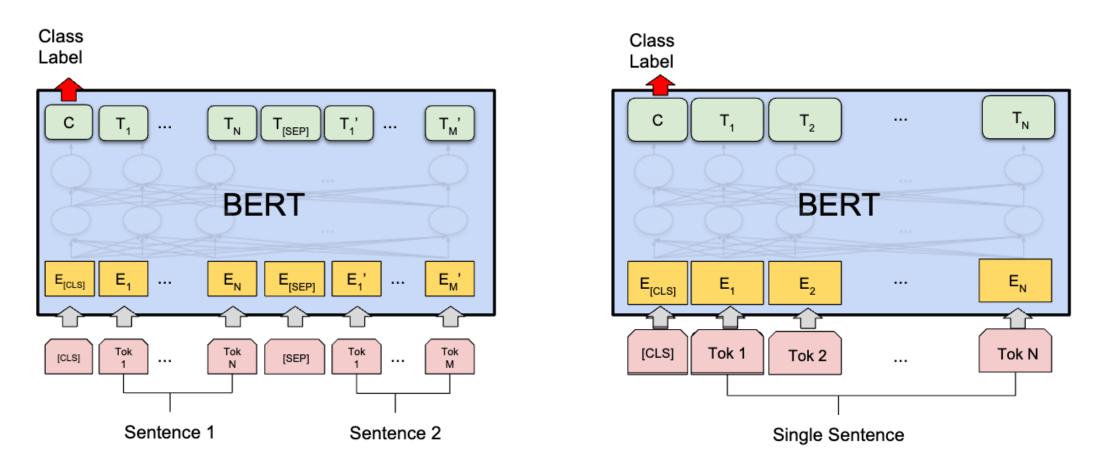
Pre-Training Task: Next Sentence Prediction



7

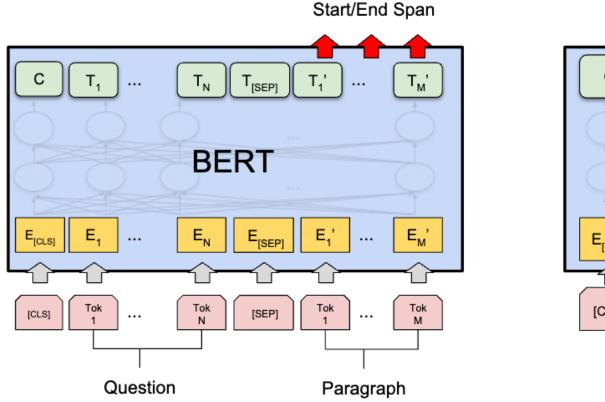
Fine-Tuning: Sentence-Level Tasks

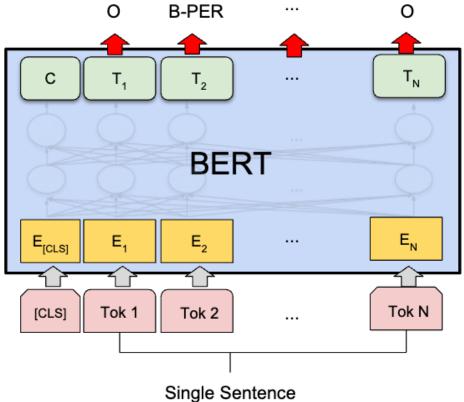
• Pre-training provides a good weight initialization



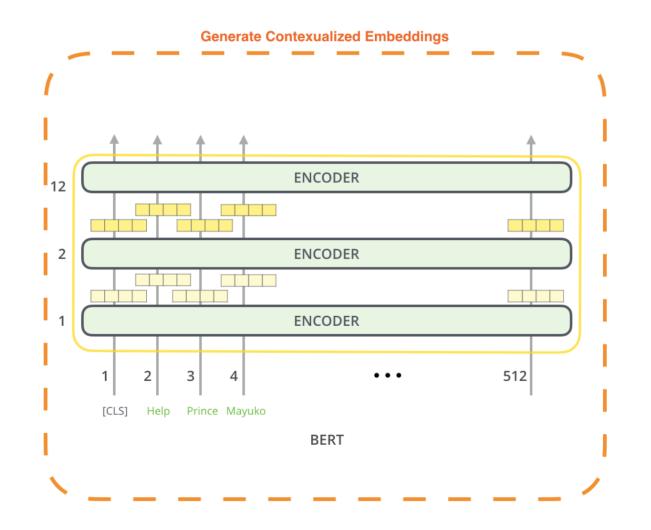
Fine-Tuning: Token-Level Tasks

• Pre-training provides a good weight initialization

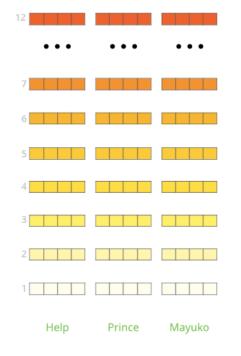




BERT as General Contextualized Representations



The output of each encoder layer along each token's path can be used as a feature representing that token.



But which one should we use?

Amazing Performance

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Encoder-Only: RoBERTa

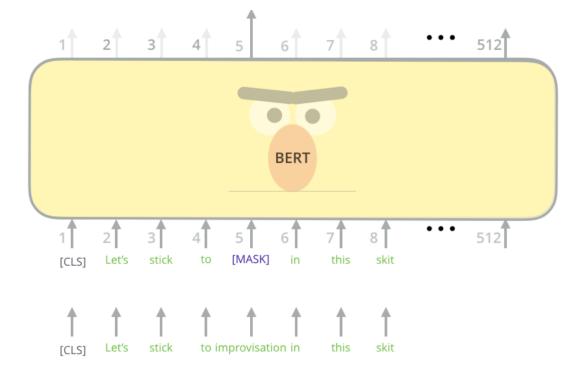
- RoBERTa: A Robustly Optimized BERT Pretraining Approach, arXiv 2019
 - Robustly optimized **BERT a**pproach (RoBERTa)
 - BERT is still under-trained
 - Improve the robustness of training BERT

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Yinhan Liu*[§] Myle Ott*[§] Naman Goyal*[§] Jingfei Du*[§] Mandar Joshi[†] Danqi Chen[§] Omer Levy[§] Mike Lewis[§] Luke Zettlemoyer^{†§} Veselin Stoyanov[§] [†] Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA {mandar90,lsz}@cs.washington.edu [§] Facebook AI {yinhanliu,myleott,naman,jingfeidu, danqi,omerlevy,mikelewis,lsz,ves}@fb.com

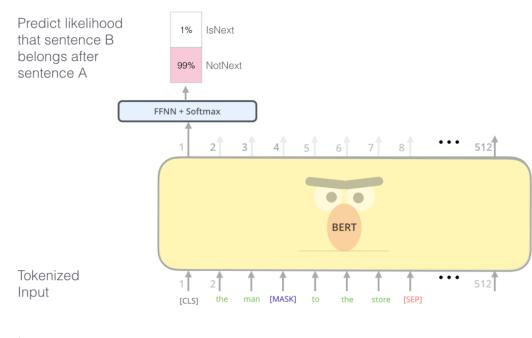
Static Masking vs. Dynamic Masking

- Static masking: decide masked words during data pre-processing
- Dynamic masking: decide masked words right before feeding into models



Masking	SQuAD 2.0	MNLI-m	SST-2
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9

Removing Next Sentence Prediction Task



Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE
Our reimplementation	on (with NSP loss):			
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0
Our reimplementation	on (without NSP lo.	ss):		
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP] Sentence A Sentence B

True Byte-Pair Encoding (BPE)

- BERT: BPE with unicode characters
 - Vocabulary size: 30K
- RoBERTa: BPE with bytes
 - Vocabulary size: 50K

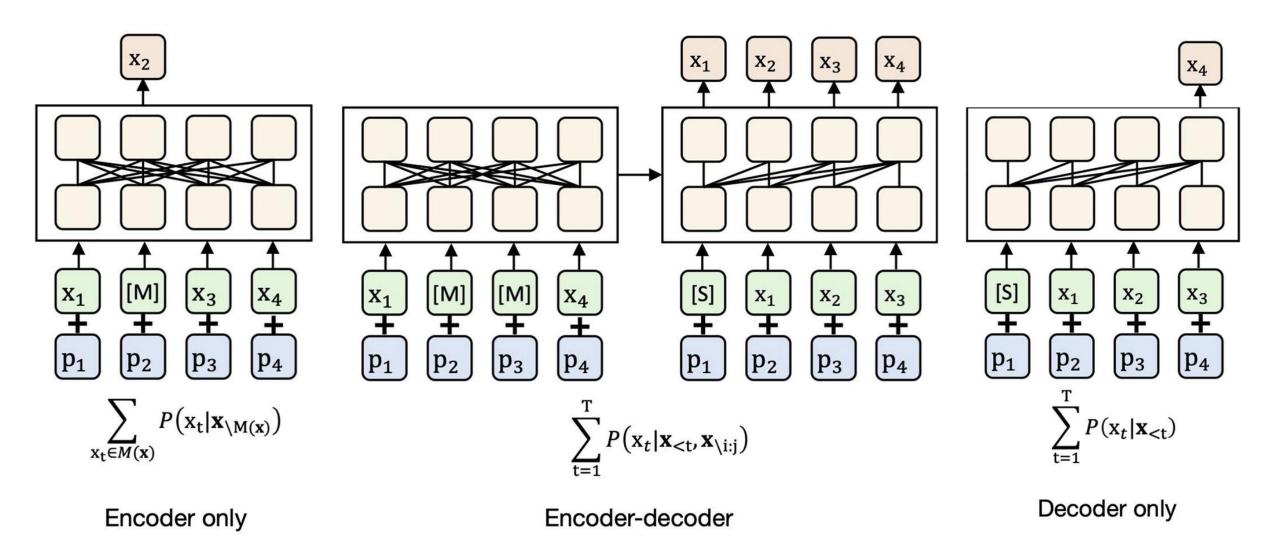
Training Details

- Trained longer
- 10x data
- Bigger batch sizes

Much Better Performance Than BERT

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7

Three Types of Pre-Training



18

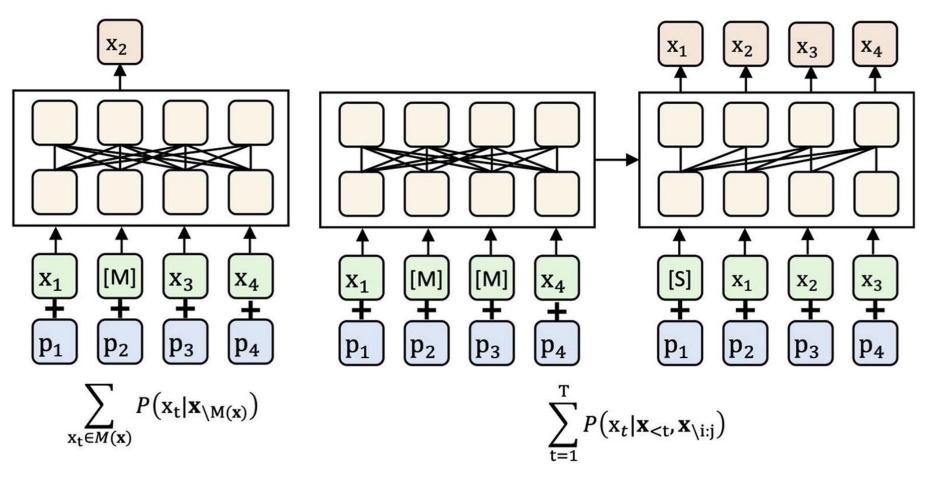
Encoder-Decoder: BART

- BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, ACL 2020
 - Bidirectional and Auto-Regressive Transformers (BART)
 - Pre-training for generation tasks

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

Mike Lewis*, Yinhan Liu*, Naman Goyal*, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer Facebook AI {mikelewis, yinhanliu, naman}@fb.com

Encoder-Only vs. Encoder-Decoder

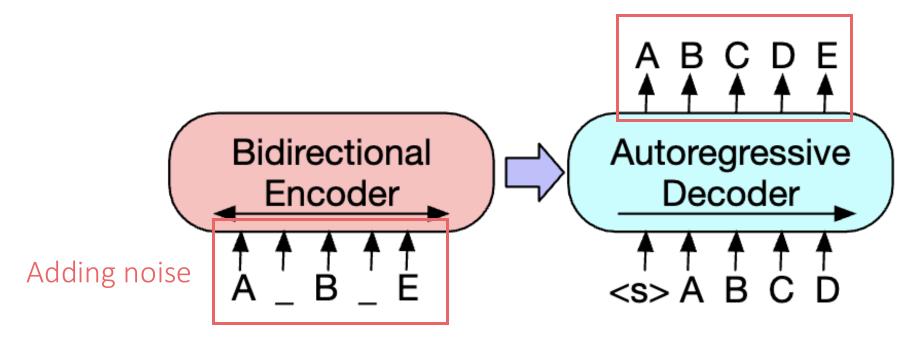


Encoder only

Encoder-decoder

Denoising Autoencoder

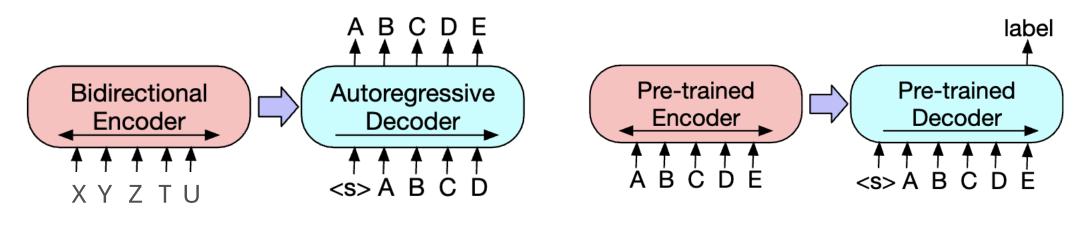
Generate original input



Denoising Objective

- Token Masking
 - A<mask>CD<mask>F. → ABCDEF.
- Token Deletion
 - ACDF. \rightarrow ABCDEF.
- Text Infilling
 - A<mask>D<mask>F. → ABCDEF.
- Sentence Permutation
 - FG. ABC. DE. → ABC. DE. FG.
- Document Rotation
 - E. FG. ABC. D → ABC. DE. FG.

Fine-Tuning



Sequence-to-Sequence

Classification

Comparable Performance on Classification Tasks

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

Better Performance on Generation Tasks

	CNN/DailyMail			XSum			
	R 1	R2	RL	R 1	R2	RL	
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95	
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24	
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72	
UniLM	43.33	20.21	40.51	-	-	-	
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15	
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27	
BART	44.16	21.28	40.90	45.14	22.27	37.25	

		ELI5	
	R 1	R2	RL
Best Extractive	23.5	3.1	17.5
Language Model	27.8	4.7	23.1
Seq2Seq	28.3	5.1	22.8
Seq2Seq Multitask	28.9	5.4	23.1
BART	30.6	6.2	24.3

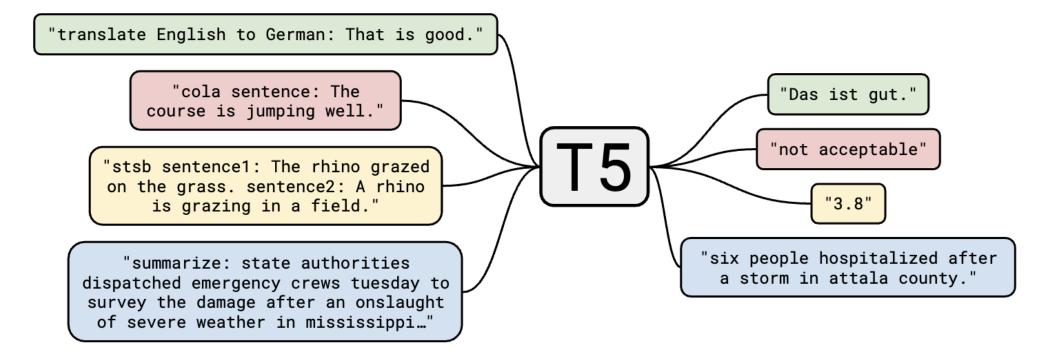
Encoder-Decoder: T5

- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, JMLR 2020
 - Text-to-Text Transfer Transformer (T5)

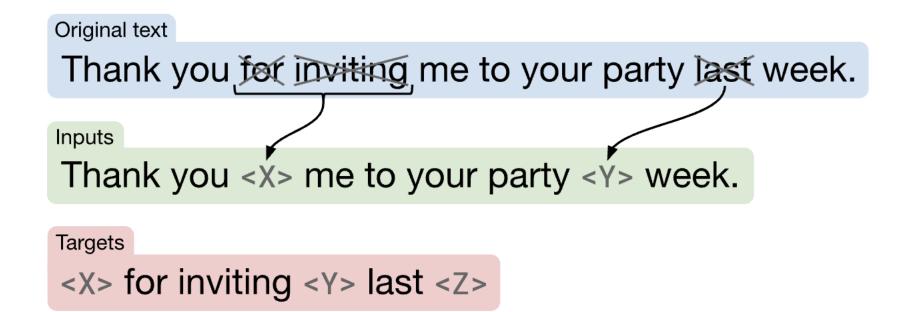
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

${f Colin}\ {f Raffel}^*$	CRAFFEL@GMAIL.COM
Noam Shazeer [*]	NOAM@GOOGLE.COM
Adam Roberts [*]	ADAROB@GOOGLE.COM
Katherine Lee*	KATHERINELEE@GOOGLE.COM
Sharan Narang	SHARANNARANG@GOOGLE.COM
Michael Matena	MMATENA@GOOGLE.COM
Yanqi Zhou	YANQIZ@GOOGLE.COM
Wei Li	MWEILI@GOOGLE.COM
Peter J. Liu	PETERJLIU@GOOGLE.COM

Convert Everything to Text-to-Text Tasks



Unsupervised Objective



Multi-Task Learning

- Convert everything to text-to-text tasks
- Jointly fine-tune them together

Multi-Task Learning

D.7 SST2

Original input:

Sentence: it confirms fincher 's status as a film maker who artfully bends technical know-how to the service of psychological insight .

Processed input: sst2 sentence: it confirms fincher 's status as a film maker who artfully bends technical know-how to the service of psychological insight

Original target: 1

Processed target: positive

Multi-Task Learning

D.4 MRPC

Original input:

Sentence 1: We acted because we saw the existing evidence in a new light, through the prism of our experience on 11 September, "Rumsfeld said.
Sentence 2: Rather, the US acted because the administration saw " existing evidence in a new light, through the prism of our experience on September 11 ".

Processed input: mrpc sentence1: We acted because we saw the existing evidence in a new light , through the prism of our experience on 11 September , " Rumsfeld said . sentence2: Rather , the US acted because the administration saw " existing evidence in a new light , through the prism of our experience on September 11 " .

Original target: 1

Processed target: equivalent

D.16 WMT English to German

Original input: "Luigi often said to me that he never wanted the brothers to end up in court," she wrote.

Processed input: translate English to German: "Luigi often said to me that he never wanted the brothers to end up in court," she wrote.

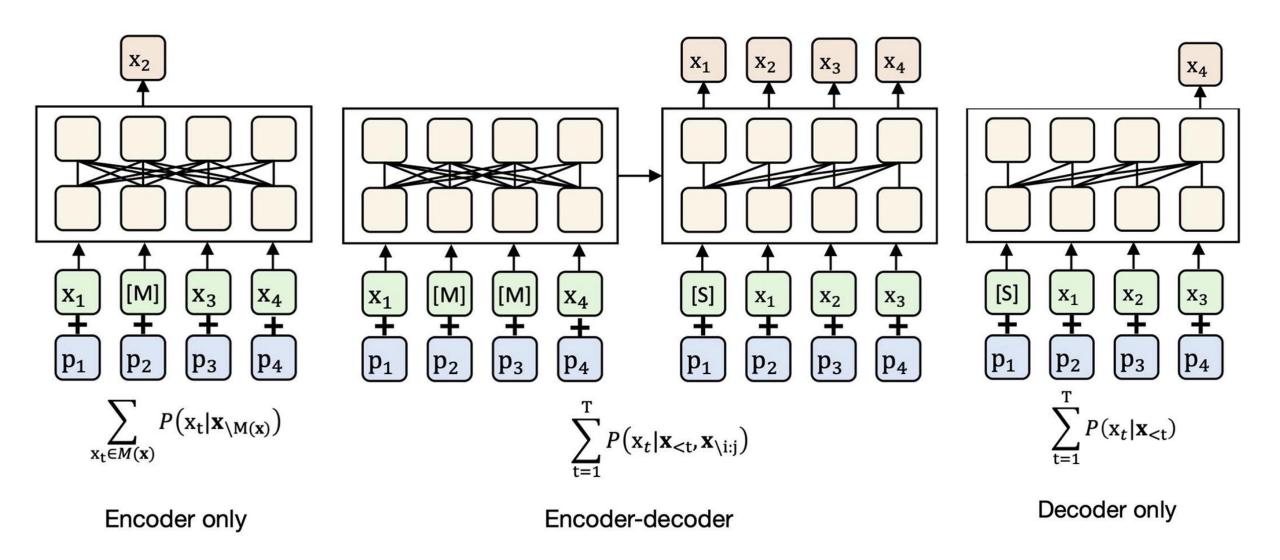
Original target: "Luigi sagte oft zu mir, dass er nie wollte, dass die Brüder vor Gericht landen", schrieb sie.

Processed target: "Luigi sagte oft zu mir, dass er nie wollte, dass die Brüder vor Gericht landen", schrieb sie.

Promising Results

Model	$\begin{array}{c} \mathrm{QQP} \\ \mathrm{F1} \end{array}$	QQP Accuracy	MNLI-m Accuracy	MNLI-mm Accuracy	QNLI Accuracy	RTE Accuracy	WNLI Accuracy
Previous best	74.8^{c}	90.7 ^b	91.3 ^a	91.0 ^a	99.2 ^a	89.2^{a}	91.8 ^a
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	92 .2	91.9	96.9	92 .8	94.5
	SQuAD) SQuAD	SuperGLU	JE BoolQ	CB	CB	COPA
Model	EM	F1	Average	Accuracy	y F1	Accuracy	Accuracy
Previous best	90.1^{a}	95.5^{a}	84.6^{d}	87.1^{d}	90.5^d	95.2^d	90.6^d
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	91.26	96.22	88.9	91.2	93.9	96.8	94.8
	MultiRC	MultiRC	ReCoRD	ReCoRD	RTE	WiC	WSC
Model	F1a	$\mathbf{E}\mathbf{M}$	F1	Accuracy	Accuracy	Accuracy	Accurac
Previous best	84.4^{d}	52.5^d	90.6^d	90.0^d	88.2^d	69.9^d	89.0^{d}
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.1	63.3	94.1	93.4	92.5	76.9	93 .8

Three Types of Pre-Training



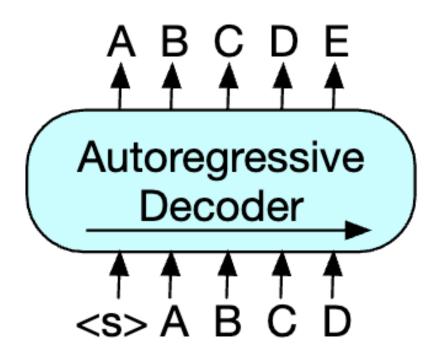
34

Decoder-Only: GPT

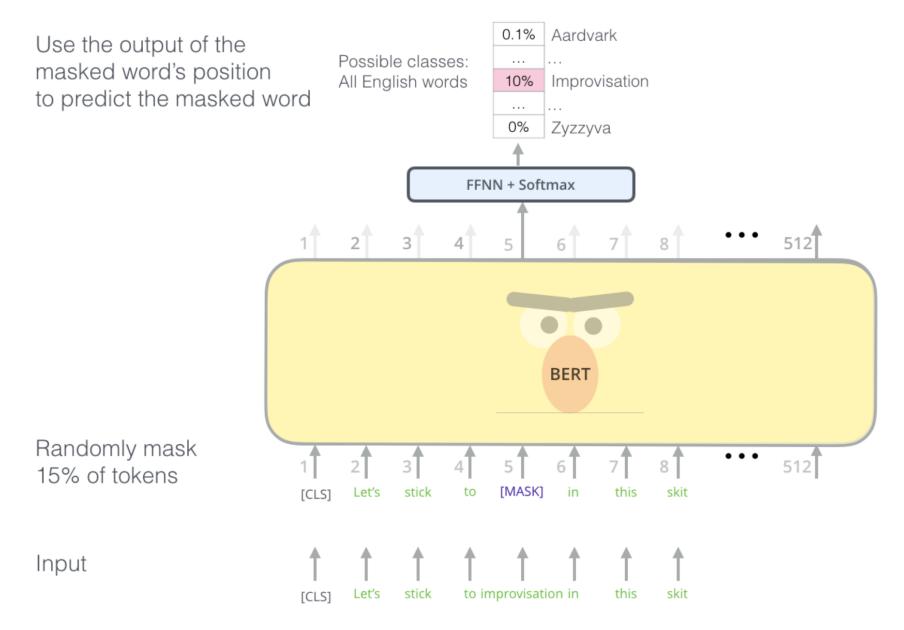
- Improving Language Understanding by Generative Pre-Training, OpenAl 2018
 - Generative Pre-trained Transformer (GPT)
- Language Models are Unsupervised Multitask Learners, OpenAl 2019
 - GPT-2
- Language Models are Few-Shot Learners, OpenAl 2020
 - GPT-3

Language Modeling

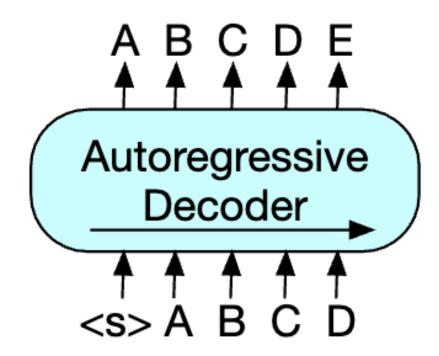
- Next word prediction
- Trained with large corpus



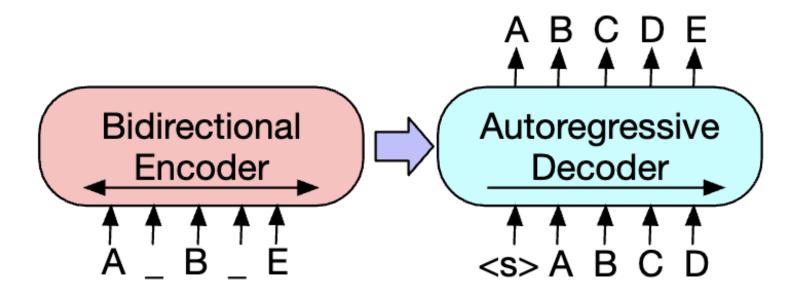
Comparison: Masked Language Models



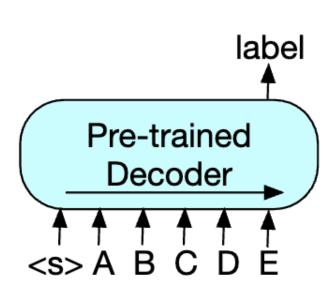
Comparison: Causal Language Models

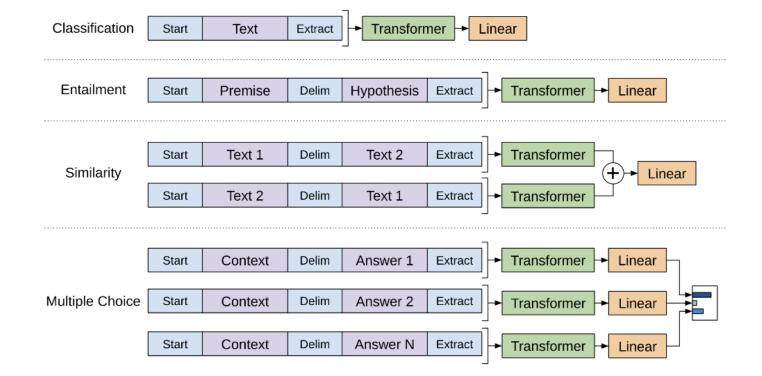


Comparison: Seq2Seq Models



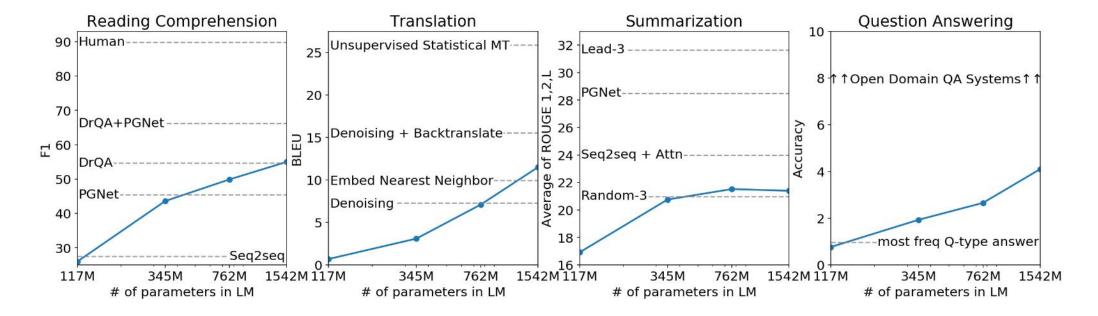
GPT-1: Good Contextualized Representations





GPT-2: Unsupervised Pre-Training Helps Supervised Tasks

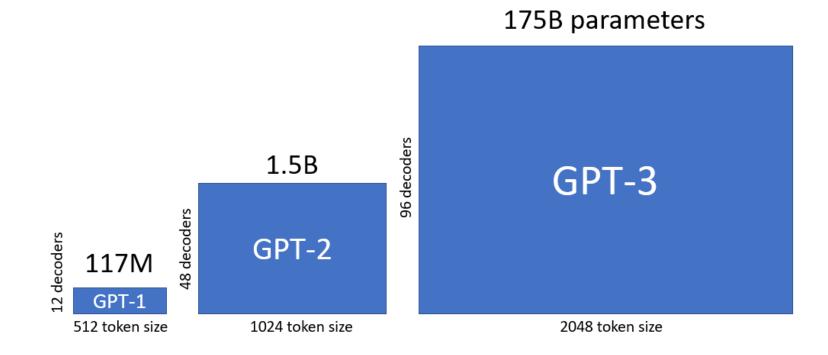
• Larger training data, larger model size



Demonstrate zero-shot ability on certain tasks

GPT-3: From Fine-Tuning to Few-Shot Learning

• Even larger training data, even larger model size



GPT-3: From Fine-Tuning to Few-Shot Learning

• Solve entirely new tasks by few-shot learning (in-context learning)

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

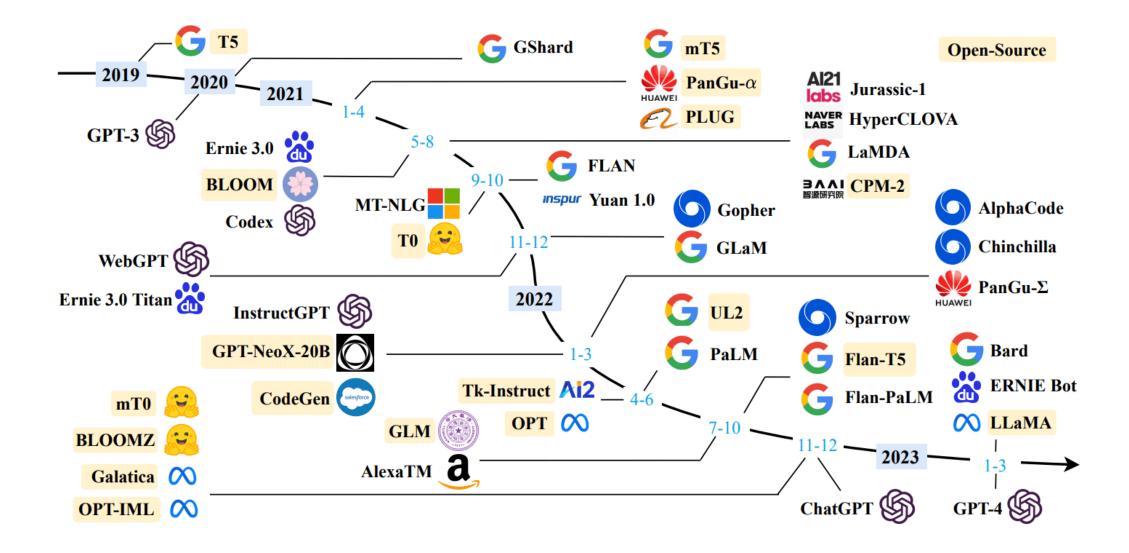
Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. // _____

Large Language Models



Next Lecture

- Natural Language Processing Basics
- Large Language Models
- Prompting
- In-Context Learning