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(Some slides adapted from COLING-22 Tutorial: Uncertainty Estimation for Natural Language Processing)




Invited Talk

Time: 10/9 Wednesday lecture time on Zoom:
https://tamu.zoom.us/my/khhuang?pwd=0AdWOKVOCGPApgDbJnVtktdW2AE6Nb.1

Title: Machine Unlearning: the general theory and LLM practice for privacy

Speaker: Eli Chien, Postdoc at the Georgia Institute of Technology
Abstract:

“The right to be forgotten” is the concept from GDPR that data holder (server) should erase the data and the
corresponding derivatives whenever the original data providers (users) request for it. It is the common
practice that LLM are trained on extensive and diverse dataset, which are usually generated from users.
While retraining from scratch without those data is the gold standard, it is prohibitively costly. The goal of
machine unlearning is to develop efficient approaches to approximate such gold standard, thus obeying the
privacy regulation in laws like GDPR. In this talk, | will first introduce the generic machine unlearning problem
and my recent progress in unlearning theory. Then we will dive into our empirical studies of unlearning for
LLM, which highlight the current popular unlearning heuristics and pitfalls of empirical unlearning
evaluation.



https://tamu.zoom.us/my/khhuang?pwd=oAdWOKVOCGPApqDbJnVtktdW2AE6nb.1

Team Project Highlights

- 10/11 Friday in person
« 9teams

« A 4-min presentation for each team
- The topic you choose
- An introduction to the task
- Evaluation metrics

- The dataset, models, and approaches you plan to use
« Preliminary results (optional)



Model Uncertainty

Hello! Could you help me reserve a table
at the “The Best” restaurant for tomorrow

at 12pm?

Hello! Could you help me reserve a table
at the “The Best” restuarant for tomorrow

at 12pm?

Hello! Could you help me reserve a table
at the “The Best” restaurant for tomorrow

at 12pm?

Hello! Could you help me reserve a table
at the “The Best” restuarant for tomorrow

at 12pm?

Of course! I've reserved a table at the
“The Best” restaurant for tomorrow at
12pm.
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Of course! I've reserved a table at the
“The Best” restaurant for tomorrow at
12pm. (Confidence: 98%)
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Provide additional information to decide if we should trust the answers



Why Do We Need Uncertainty Estimates?

- Even the best models will sometimes be wrong

- Uncertainty estimates can help us understand when the model might be
wrong

- Being aware of uncertainty can allow us to prepare for having to catch
mistakes



Why Do We Need Uncertainty Estimates?

- Build or reduce trust in certain pointwise predictions

- Compare the performance of different

- |dentify areas of improvement for a given model

- List all plausible answers subject to specified probabilistic guarantees

- Produce more natural responses (that reflect confidence) for dialogue
agents

- Abstain from making predictions when in doubt
... and more



Ways of Expressing Uncertainty

As a numerical value (e.g. in [0,1]) returned with each prediction:

[ Where did Super Bowl 50 take place? ]—>[ Santa Clara, California ] [ confidence: 0.85 }

As a confidence interval around a numerical value:

 What year was Super Bowl 50? — 2016 | [ [2015-2016] |

[ What day was the game played on? 4>[ February 7, 2016 ] [ +/- 2 days ]

As a set of candidate answers:

[ Who won Super Bowl 507?

: 4{[ Denver Broncos H Carolina Panthers ]JL

As a decision to abstain from answering:

[ Who won Super Bowl 507? J—»[ “Don’t know” J




Uncertainty Estimates for Text Classification

« Softmax-based measure

model

eZc
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Softmax Function

P(y = c| x) = softmax(z.)  softmax(t) =

What is the problem of using softmax?



Uncertainty Estimates for Text Classification

« Softmax-based measure 1
a(t) = -
1 _|_ e t ! 0.5 ‘ !

- Overconfidence in predictions S . /
igmoid Function
- Not for unseen data (out-of-distribution) | A I I

« Lack of calibration

- We say our model is calibrated if

P(model is correct | confidence is o) = «
- |In other words, a-fraction of all predictions with confidence a should be correct
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Incorrect prediction



Measure Calibration Error

- The quality of our confidence is captured by its empirical calibration error
CE(a) = ‘@(model is correct | confidence is o) — oz‘

Observed frequency (accuracy) Confidence level

- We can estimate the calibration error with binning

Is cormect - . 0 1 0 0 1 1 0 1

Confidence . | 042 042 043 044 045 046  0.47 | 0.48

Avg. bin confidence = 0.45
Avg. bin accuracy = 0.50 — Calibration error = 0.05



Measure Calibration Error

- The expected calibration error is estimated by averaging over bins

# of bins > |B A |
ECE = i Bl [2ien, Wvi = 0i}  Yiep, &
=R By

k=1

fraction of samples in bin k



Measure Calibration Error

- The expected calibration error is estimated by averaging over bins

‘BA“ EZiEBk l{yz’ — ?)z} _ Z.,jggk C;
Vo By| > Bk

Accuracy in bin k
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Measure Calibration Error

- The expected calibration error is estimated by averaging over bins

Byl | 2_ien, Wi = Uit 1 22ieB, Ci
N |BA‘ : |Bk|

Avg. confidence in bin k
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On Calibration of Modern Neural Networks

Chuan Guo ™! Geoff Pleiss"! Yu Sun™! Kilian Q. Weinberger '



Uncertainty Estimates for Text Classification

« Softmax-based measure

model
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Softmax Function

P(y = c| x) = softmax(z.)  softmax(t) =
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Softmax with Temperature

model

Higher T: softens probabilities.
Lower T: sharpens probabilities.
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Temperature Scaling

- Post-hoc rescale the logits
- Optimize T on a held-out calibration to minimize the negative log-likelihood

oz T)
p(y; | x) Zj exp(zj/T)

temperature = torch.tensor(1.0, requires_grad=True)
optimizer - optim.LBFGS([temperature], 1lr-0.01, max_iter-100)
def eval():
optimizer.zero_grad()
loss F.cross_entropy(logits / temperature, labels)
loss.backward()
return loss

optimizer.step(eval)




Calibration Example
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Calibration of Pre-trained Transformers

Shrey Desai and Greg Durrett

Department of Computer Science

The University of Texas at Austin
shreydesail@utexas.edu gdurrett@cs.utexas.edu



Results
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Results

In-Domain Out-of-Domain
Method SNLI QQP SWAG MNLI TPPDB HSWAG
MLE LS MLE LS MLE LS MLE LS MLE LS MLE LS

Model: BERT

Out-of-the-box 7.12 6.33 10.01 7.03 3.74 851 630 12.62 5.73
Temperature scaled 8.37 8.16 10.89 1 3.61 405 7.15 5.78 12.83 5.34

Model: RoBERTa

Out-of-the-box 6.38 6.11 881 362 450 955 891 11.93
Temperature scaled 8.70 8.69 1140 [ 146 593 7.86 531 11.22




Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Yarin Gal YG279@CAM.AC.UK
Zoubin Ghahramani 7G201 @CAM.AC.UK

University of Cambridge



Softmax for Out-of-Distribution Data
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Gaussian Process

Gaussian Process
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Variance is The Key

- Larger variance =2 larger uncertainty

Gaussian Process

100
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Dropout as a Bayesian Approximation

- Dropout objective minimizes the KL-divergence between an approximate
distribution and the posterior of a deep Gaussian process

N L
I~ - .
E‘dmpﬂut = E ZE[}F*&&F” + *}"Z (”WiH% + ||b1||g)
Ci=l i—1

Evn = [ o) log p(Y[X, ) ~ KL(galw)] [p(w)
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What is Dropout?
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Model Uncertainty with Dropout

- Sample T dropout masks for model forward passes
« Estimate variance as uncertainty
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Uncertainty Visualization
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Conformal Prediction

As a numerical value (e.g. in [0,1]) returned with each prediction:

[ Where did Super Bowl 50 take place? ]—»[ Santa Clara, California ] [ confidence: 0.85

~

J

As a confidence interval around a numerical value:

[ What year was Super Bowl 507?

1

2016

| [ 12015-2016] |

[ What day was the game played on?

—

February 7, 2016

| [ +-20ays |

As a set of candidate answers:

[ Who won Super Bowl 507?

%{[ Denver Broncos ][ Carolina Panthers ]Jl

As a decision to abstain from answering:

[ Who won Super Bowl 507

L Dontknow |
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Conformal Prediction

* X = [Viower» Yupper] With @ 95% confidence that the interval will cover
true value of y
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Inductive Conformal Prediction

- Split the training data into training set and calibration set
- Train a model f with training set

- Predict the examples from the calibration set with f

« Compute nonconformity scores S; = |y; — f(x;)|

- Compute nonconformity score distribution

- Get (1-a)-th percentile value g ((1-a)-confidence)

- For a testing example, predict interval [y — q, ¥ + q]

Frequency
[ TR ) Y | 8
g O O O
o o o o o
1 I
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