
CSCE 689: Special Topics in Trustworthy NLP

khhuang@tamu.edu

Lecture 2: Machine Learning Basics, Word Representations

Kuan-Hao Huang

(Some slides adapted from Chris Manning, Dan Jurafsky, Danqi Chen, and Karthik Narasimhan)

NLP Applications

1
How to formulate those problems?

Formulation

• Build an NLP model to learn the association between input 𝑥 and output 𝑦

• Input 𝑥: a sequence of symbols

• What’s the temperature now?

• I like this restaurant.

• Output 𝑦: label

• Category

• Structure

• Text

• …

2

Text Classification

3

• Input 𝑥 → Output 𝑦 (category)

𝑦 ∈ {𝑝𝑜𝑠, 𝑛𝑒𝑔} 𝑦 ∈ {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑓𝑟𝑎𝑢𝑑}
𝑦 ∈ {𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟, 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠,
𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔, 𝐼𝑇 𝑠𝑒𝑟𝑣𝑖𝑐𝑒}

Structured Classification

4

• Input 𝑥 → Output 𝑦 (structure)

• Multiple labels with dependency

Generation

5

• Input 𝑥 → Output 𝑦 (text)

• Also called sequence-to-sequence tasks

Classification vs. Generation

• There is no clear boundary between classification and generation

• Generation = Structured Token Classification

6

𝑦 ∈ {𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠} 𝑦 ∈ {𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠}

Classification vs. Generation

• There is no clear boundary between classification and generation

• Classification problems can be solved by generation

7

What’s the sentiment of the following text: I very like this restaurant.

The sentiment is positive.

Supervised Learning

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Example 𝑥𝑖 ∈ 𝒳, label 𝑦𝑖 ∈ 𝐶

• Train a classifier(model) 𝑓: 𝒳 → 𝐶

8

How to train?

Training Stage

Testing Stage

• Testing data 𝒟𝑡𝑒𝑠𝑡 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 }

• Make predictions ෤𝑦𝑖 = 𝑓(𝑥𝑖)

• Evaluate performance
1

n
σ𝑖 𝑆(𝑦𝑖 , ෤𝑦𝑖) Accuracy, F1 Score, etc.

A General Framework for Text Classification

9

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification

10

• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words, n-grams, word embeddings, etc.
We will talk about them later!

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification

11

• Teach the model how to make prediction 𝑦

• Logistic regression, neural networks, CNN, RNN, LSTM, Transformers

We will talk about them later!

Bag-of-Words (BoW)

• Bag-of-Words (BoW)

• Consider text as a set of words

• Easy, no effort required

12

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Bag-of-Words (BoW)

13

This restaurant is the best one in
College Station

This

restaurant

is

the

best

one

in
College

Station

I study natural language processing
everyday

study

I

processing

everyday

natural

language

Bag-of-Words (BoW)

14

This restaurant is the best one in College Station

𝐱 = [0 1 1 0 0 1 0 1 1 … 0 1 1 0 1 1]

Feature vector 𝐱 is
a binary vector

Each dimension represents one word,
indicating the presence of word

The length of vector is
the dictionary size 𝑉

Advantages and disadvantages?

Bag-of-Words (BoW)

15

Bob likes Alice very much

Alice likes Bob very much

𝐱 = [0 1 1 0 0 1 … 0 1]

They will have the same BoW vector!

BoW fails to capture sentential structure

Any solutions?

N-Grams

16

Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}

Trigram {Bob likes Alice, likes Alice very, Alice very much}

4-gram {Bob likes Alice very, likes Alice very much}

Bag-of-N-Grams

17

Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 … 0 0 0 1 … 1 1]𝐱 = [0 1 … 0 1 1 0 … 0 1]

BoW (unigram) features Bigram features

N-gram features capture more sentential structure

We can consider trigrams, 4-grams, …

Other Variants

18

𝐱 = [0 1 1 0 0 1 … 0 1]Binary BoW

𝐱 = [0 2 1 0 0 4 … 0 3]Word Count

𝐱 = [0 0. 16 0.08 0 0 0.32 … 0 0.24]Word Frequency

𝐱 = [0 0. 48 0.02 0 0 0.15 … 0 0.88]TF-IDF

𝑓𝑤 ⋅ log
𝑁

𝑛𝑡Term Frequency
(TF)

Inverse Document
Frequency (IDF)

Bag-of-Words and Bag-of-N-Grams

• Bag-of-Words (BoW)

• A set of words

• Bag-of-N-Grams

• A set of n-grams

19

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

We will discuss “learnable”
features later!

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Logistic Regression

20

• Logistic regression

• Find linear weights to map feature vector 𝐱 to label 𝑦

Logistic Regression

• Let’s start from binary classification

• Input: feature vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑]

• Output: label 𝑦 ∈ {0, 1}

• Find a linear decision boundary to classify 𝐱 into {0, 1}

21
https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

https://blog.bigml.com/2016/09/28/logistic-regression-versus-decision-trees/

Logistic Regression

22

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0 𝑜𝑟 1

𝑧 = 𝐰 ⋅ 𝐱 + 𝑏

෤𝑦 = 𝑃 𝑦 = 1 𝐱) = 𝜎 𝑧

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏

Learnable parameters

𝜎 𝑡 =
1

1 + 𝑒−𝑡

Sigmoid Function

Decision boundary: = ቊ
1
0

If ෤𝑦 ≥ 0.5

If ෤𝑦 < 0.5

Convert to probability

How to Find The Best Parameters?

23

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏

Learnable parameters

Iterative Optimization Methods

Randomly initialize
parameters

Evaluate
“goodness” of

parameters

Identify “good”
updating direction

Update parameters

Loss Function

24

Iterative Optimization Methods

• For each training example 𝑥, 𝑦

• Output label probability is ෤𝑦 = 𝑃 𝑦 = 1 𝐱) = 𝜎 𝐰 ⋅ 𝐱 + 𝑏

ℒ𝐶𝐸(𝑦, ෤𝑦) = − 𝑦 log ෤𝑦 + 1 − 𝑦 log 1 − ෤𝑦

Cross Entropy Loss

Loss Function

25

Iterative Optimization Methods

ℒ𝐶𝐸(𝑦, ෤𝑦) = − 𝑦 log ෤𝑦 + 1 − 𝑦 log 1 − ෤𝑦

Cross Entropy Loss

𝑦 = 1 and ෤𝑦 = 0.9 ℒ𝐶𝐸 = − 1 ⋅ log 0.9 + 0 ⋅ log 0.1 = − log 0.9 ≈ 0.105

𝑦 = 1 and ෤𝑦 = 0.1 ℒ𝐶𝐸 = − 1 ⋅ log 0.1 + 0 ⋅ log 0.9 = − log 0.1 ≈ 2.302

𝑦 = 0 and ෤𝑦 = 0.9 ℒ𝐶𝐸 = − 0 ⋅ log 0.9 + 1 ⋅ log 0.1 = − log 0.1 ≈ 2.302

𝑦 = 0 and ෤𝑦 = 0.1 ℒ𝐶𝐸 = − 0 ⋅ log 0.1 + 1 ⋅ log 0.9 = − log 0.9 ≈ 0.105

The lower the loss is, the more accurate the output probability is

Loss Function

26

Iterative Optimization Methods

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Output labels probabilities ෤𝑦1, ෤𝑦2,…, ෤𝑦𝑚

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖 = −
1

𝑚
෍

𝑖

𝑦𝑖 log ෥𝑦𝑖 + 1 − 𝑦𝑖 log 1 − ෥𝑦𝑖

Cross Entropy Loss

Optimization Objective

27

Iterative Optimization Methods

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖

Cross Entropy Loss

𝐰∗; 𝑏∗ = 𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏Parameters 𝜃 =

Optimization
objective

Gradient

28

Iterative Optimization Methods

𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

https://www.digitalocean.com/community/tutorials/intro-to-optimization-in-deep-learning-gradient-descent

𝜃(0) → 𝜃(1) → 𝜃(2) → ⋯ → 𝜃 𝑘 → ⋯ → 𝜃∗

∇𝜃(𝑡)ℒ𝑡𝑜𝑡𝑎𝑙 is a “good” direction

to minimize the objective

𝜃(𝑡)

𝜃(𝑡+1)

∇𝜃(𝑡)ℒ𝑡𝑜𝑡𝑎𝑙

Gradient

29

∇𝜃ℒ𝑡𝑜𝑡𝑎𝑙
𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
=

𝜕 −
1
𝑚

σ𝑖 𝑦𝑖 log ෤𝑦𝑖 + 1 − 𝑦𝑖 log 1 − ෤𝑦𝑖

𝜕𝐰𝑗

= −
1

𝑚
෍

𝑖

𝑦𝑖

𝜕 log 𝜎(𝑧𝑖)

𝜕𝐰𝑗
+ 1 − 𝑦𝑖

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

෤𝑦𝑖 = 𝜎(𝑧𝑖)
𝑧𝑖 = 𝐰 ⋅ 𝐱𝑖 + 𝑏=

𝜕 −
1
𝑚

σ𝑖 𝑦𝑖 log 𝜎(𝑧𝑖) + 1 − 𝑦𝑖 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

Gradient

30

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
= −

1

𝑚
෍

𝑖

𝑦𝑖

𝜕 log 𝜎(𝑧𝑖)

𝜕𝐰𝑗
+ 1 − 𝑦𝑖

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

𝜕 log 𝜎(𝑧𝑖)

𝜕𝐰𝑗
=

1

𝜎 𝑧𝑖
⋅ 𝜎 𝑧𝑖 1 − 𝜎 𝑧𝑖 ⋅ 𝐱𝑖,𝑗 = 1 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗
=

1

1 − 𝜎 𝑧𝑖
⋅ −𝜎 𝑧𝑖 1 − 𝜎 𝑧𝑖 ⋅ 𝐱𝑖,𝑗 = −𝜎 𝑧𝑖 𝐱𝑖,𝑗 1 − 𝜎 𝑧

′
= −𝜎(𝑧)(1 − 𝜎(𝑧))

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
= −

1

𝑚
෍

𝑖

𝑦𝑖 1 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 + 1 − 𝑦𝑖 (−𝜎 𝑧𝑖 𝐱𝑖,𝑗)

= −
1

𝑚
෍

𝑖

𝑦𝑖 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 =
1

𝑚
෍

𝑖

෤𝑦𝑖 − 𝑦𝑖 𝐱𝑖,𝑗

Gradient

31

Iterative Optimization Methods

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖 𝐱𝑖

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖

Gradient Descent

32

Iterative Optimization Methods

ℒ𝑡𝑜𝑡𝑎𝑙

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂 ∇𝐰ℒ𝑡𝑜𝑡𝑎𝑙

𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∇𝑏ℒ𝑡𝑜𝑡𝑎𝑙

Learning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/

Training Process

33

Iterative Optimization Methods

Randomly initialize
parameters

Evaluate
“goodness” of

parameters

Identify “good”
updating direction

Update parameters

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖; 𝐰 𝑡 , 𝑏(𝑡)

Cross Entropy Loss
𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰(𝑡)
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖 𝐱𝑖

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏(𝑡)
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂 ∇𝐰ℒ𝑡𝑜𝑡𝑎𝑙

𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∇𝑏ℒ𝑡𝑜𝑡𝑎𝑙

From Binary to Multiclass Classification

34

• Logistic Regression for binary classification

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0 𝑜𝑟 1

𝑧 = 𝐰 ⋅ 𝐱 + 𝑏

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏
Learnable

Parameters

𝑃 𝑦 = 1 𝐱) = 𝜎 𝑧

𝜎 𝑡 =
1

1 + 𝑒−𝑡

Sigmoid Function

Prediction = ቊ
1
0

If 𝑃 𝑦 = 1 𝐱) ≥ 0.5

If 𝑃 𝑦 = 1 𝐱) < 0.5

From Binary to Multiclass Classification

35

• Logistic Regression for multiclass classification

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0,1, … , 𝐶 − 1

𝑧𝑐 = 𝐰𝑐 ⋅ 𝐱 + 𝑏𝑐

Weight Vectors 𝐰𝑐 = [𝑤𝑐,1, 𝑤𝑐,2, 𝑤𝑐,3, … , 𝑤𝑐,𝑑] Bias 𝑏𝑐
Learnable

Parameters

𝑃 𝑦 = 𝑐 𝐱) = softmax 𝑧𝑐

softmax 𝑧𝑐 =
𝑒𝑧𝑐

σ𝑡 𝑒𝑧𝑡

Softmax Function

Prediction = arg max
c

𝑃 𝑦 = 𝑐 𝐱)

Logistic Regression

• Logistic regression

• Find linear weights to map feature vector 𝐱 to label 𝑦

36
https://chatgpt.com/

https://www.researchgate.net/publication/344636757_CQNN_Convolutional_Quadratic_Neural_Networks

What if linear weights are not powerful enough?

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Neural Networks

37

• Neural Networks

• Find a non-linear decision boundary to map feature vector 𝐱 to label 𝑦

Biological Neurons

38

Neuron activation: A neuron becomes active to transmit information
when it receives sufficient input from other neurons

https://www.kdnuggets.com/2022/06/activation-functions-work-deep-learning.html

Neurons in Neural Networks

39

Mimic the behavior of neurons to transmit information

𝑥1 𝑤1 𝑏

Σ
𝑥2 𝑤2

𝑥3 𝑤3

𝑥4 𝑤4

𝜑 𝑜

https://blog.devops.dev/exploring-activation-functions-in-deep-learning-properties-derivatives-and-impact-on-model-7585aad8a757

Input 𝐱 Weight 𝐰 Bias

Activation
Function

Output

𝑜 = 𝜑 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

Neurons vs. Logistic Regression

40

𝑜 = 𝜑 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 ෤𝑦 = 𝜎 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

Multilayer Perceptron (MLP)

41

𝑥1

ℎ1
(1)

𝑥2

𝑥3

Neuron𝑤1,1
(1)

𝑤1,2
(1)

𝑤1,2
(1)

ℎ1
(1)

= 𝜑 ෍

𝑖

𝑤1,𝑖
(1)

𝑥𝑖 + 𝑏 = 𝜑 𝐰1
(1)

⋅ 𝐱 + 𝑏

Multilayer Perceptron (MLP)

42

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ2
(1)

= 𝜑 ෍

𝑖

𝑤2,𝑖
(1)

𝑥𝑖 + 𝑏 = 𝜑 𝐰2
(1)

⋅ 𝐱 + 𝑏

𝑤2,1
(1)

𝑤2,2
(1)

𝑤2,2
(1)

Neuron

Neuron

Multilayer Perceptron (MLP)

43

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

𝐡(1) = 𝜑 𝐖(1)𝐱 + 𝐛(1)

Multilayer Perceptron (MLP)

44

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝐡(2) = 𝜑 𝐖(2)𝐡(1) + 𝐛(2)

Multilayer Perceptron (MLP)

45

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝐡(3) = 𝜑 𝐖(3)𝐡(2) + 𝐛(3)

Multilayer Perceptron (MLP)

46

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦

෤𝑦 = 𝜎 𝐖(𝑜)𝐡(3) + 𝐛(𝑜)
Decision boundary: = ቊ

1
0

If ෤𝑦 ≥ 0.5

If ෤𝑦 < 0.5

Optimization Objective

47

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖

Cross Entropy Loss

𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

Parameters 𝜃 = {𝐖 1 , 𝐖 2 , 𝐖 3 , 𝐖 𝑜 ,

𝐛 1 , 𝐛 2 , 𝐛 3 , 𝐛 𝑜 },

Back-Propagation

48

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐖(𝑜)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐖(𝑜)

෤𝑦 = 𝜑 𝐖(𝑜)𝐡(3) + 𝐛(𝑜)

𝜕ℒ

𝜕𝐛(𝑜)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐛(𝑜)

Back-Propagation

49

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐖(3)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐖(3)

𝐡(3) = 𝜑 𝐖(3)𝐡(2) + 𝐛(3)

𝜕ℒ

𝜕𝐛(3)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐛(3)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)

Back-Propagation

50

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐖(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐖(1)

𝜕ℒ

𝜕𝐛(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐛(1)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐡(1)
=

𝜕ℒ

𝜕𝐡(2)
⋅

𝜕𝐡(2)

𝜕𝐡(1)

Training Process

51

Iterative Optimization Methods

Randomly initialize
parameters

Evaluate
“goodness” of

parameters

Identify “good”
updating direction

Update parameters

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖; 𝐰 𝑡 , 𝑏(𝑡)

Cross Entropy Loss
𝜕ℒ

𝜕𝐖(1)
,

𝜕ℒ

𝜕𝐖(2)
, … ,

𝜕ℒ

𝜕𝐖(𝑜)

𝜕ℒ

𝜕𝐛(1)
,

𝜕ℒ

𝜕𝐛(2)
, … ,

𝜕ℒ

𝜕𝐛(𝑜)

𝐖(1) ← 𝐖(1) − 𝜂
𝜕ℒ

𝜕𝐖(1)

𝐛(1) ← 𝐛(1) − 𝜂
𝜕ℒ

𝜕𝐛(1)

From Binary to Multiclass Classification

52

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦1

Prediction = arg max
c

෤𝑦𝑐

෤𝑦2

෤𝑦3

ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐 𝐱)

Multiclass Cross Entropy Loss

What Makes Neural Networks Powerful?

53

Introduce nonlinearity

Nonlinear
Transform

Nonlinear
Transform

Nonlinear
Transform

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Neural Networks

54

• Neural Networks

• Find a non-linear decision boundary to map feature vector 𝐱 to label 𝑦

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: Bag-of-Words and N-Grams

55

• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words and n-grams
We will discuss “learnable”

features today!

Bag-of-Words and N-Gram Features

56

Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 … 0 0 0 1 … 1 1]𝐱 = [0 1 … 0 1 1 0 … 0 1]

BoW (unigram) features Bigram features

Encode a text to one vector

We can consider trigrams, 4-grams, …

Words as Vectors

57

Bob likes Alice very much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
𝑊 =

Advantages?

Use one vector to represent each word

Text = A list of vectors

Representing Words by Their Contexts

58

Distributional hypothesis: words that occur in similar contexts tend to have
similar meanings

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking

Distributional Hypothesis

59

C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: I bought ___ yesterday.

juice

C1 C2 C3 C4

1 1 0 1

loud 0 0 0 0

motor-oil 1 0 0 1

chips 0 1 0 1

choices 0 1 0 0

wine 1 1 1 1

Words that occur in similar contexts tend to have similar meanings

Word Vectors from Word-Word Co-Occurrence Matrix

• Main idea: Similar contexts → Similar word co-occurrence

• Collect a bunch of texts and compute co-occurrence matrix

• Words can be represented by row vectors

60

shark computer data eat result sugar

apple 0 0 0 8 0 2

bread 0 0 0 9 0 1

digital 0 6 5 0 2 0

information 0 4 10 0 2 0

Word Vector High cosine
similarity!

cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Most entries are 0s → sparse vectors
Low cosine
similarity!

Issues with Word-Word Co-Occurrence Matrix

• Using raw frequency counts is not always very good (why?)

• Some frequent words (e.g., the, it, or they) can have large counts

61

shark computer data eat result sugar the it

apple 0 0 0 8 0 2 104 67

bread 0 0 0 9 0 1 95 76

digital 0 6 5 0 2 0 101 65

Similarity(apple, bread) ≈ 0.994710

Similarity(apple, digital) ≈ 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts

Pointwise Mutual Information

62

Pointwise Mutual Information (PMI)

Do events 𝑥 and 𝑦 co-occur more or less than if they were independent?

PMI 𝑥, 𝑦 = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI = 0 → 𝑥 and 𝑦 occur independently → co-occurrence is as expected

• PMI > 0 → 𝑥 and 𝑦 co-occur more often than expected

• PMI < 0 → 𝑥 and 𝑦 co-occur less often than expected

Co-Occurrence Matrix with Positive PMI

63

PPMI 𝑥, 𝑦 = max log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
, 0

Positive Pointwise Mutual Information (PPMI)

shark computer data eat result sugar the it

apple 0 0 0 1.80 0 0.35 0.08 0

bread 0 0 0 1.54 0 0.29 0 0.14

digital 0 1.47 1.22 0 0.61 0 0.10 0.06

Similarity(apple, bread) ≈ 0.995069

Similarity(apple, digital) ≈ 0.010795

Sparse Vectors vs. Dense Vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Can we have short short (50-300 dimensional) and dense (real-valued) vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than explicit counts

• Sparse vectors can’t capture high-order co-occurrence

• 𝑤1 co-occurs with “car”, 𝑤2 co-occurs with “automobile”

• They should be similar, but they aren’t, because “car” and “automobile” are distinct
dimensions

• In practice, they work better!

64

How to Get Dense Vectors?

• Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

65

Only keep the top k singular values

Word Vector

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Count-Based Word Vectors

66

• Use one vector to represent each word

• Get word vectors by singular value decomposition (SVD) of PPMI weighted
co-occurrence matrix

	Slide 0: CSCE 689: Special Topics in Trustworthy NLP
	Slide 1: NLP Applications
	Slide 2: Formulation
	Slide 3: Text Classification
	Slide 4: Structured Classification
	Slide 5: Generation
	Slide 6: Classification vs. Generation
	Slide 7: Classification vs. Generation
	Slide 8: Supervised Learning
	Slide 9: A General Framework for Text Classification
	Slide 10: A General Framework for Text Classification
	Slide 11: A General Framework for Text Classification
	Slide 12: Bag-of-Words (BoW)
	Slide 13: Bag-of-Words (BoW)
	Slide 14: Bag-of-Words (BoW)
	Slide 15: Bag-of-Words (BoW)
	Slide 16: N-Grams
	Slide 17: Bag-of-N-Grams
	Slide 18: Other Variants
	Slide 19: Bag-of-Words and Bag-of-N-Grams
	Slide 20: Logistic Regression
	Slide 21: Logistic Regression
	Slide 22: Logistic Regression
	Slide 23: How to Find The Best Parameters?
	Slide 24: Loss Function
	Slide 25: Loss Function
	Slide 26: Loss Function
	Slide 27: Optimization Objective
	Slide 28: Gradient
	Slide 29: Gradient
	Slide 30: Gradient
	Slide 31: Gradient
	Slide 32: Gradient Descent
	Slide 33: Training Process
	Slide 34: From Binary to Multiclass Classification
	Slide 35: From Binary to Multiclass Classification
	Slide 36: Logistic Regression
	Slide 37: Neural Networks
	Slide 38: Biological Neurons
	Slide 39: Neurons in Neural Networks
	Slide 40: Neurons vs. Logistic Regression
	Slide 41: Multilayer Perceptron (MLP)
	Slide 42: Multilayer Perceptron (MLP)
	Slide 43: Multilayer Perceptron (MLP)
	Slide 44: Multilayer Perceptron (MLP)
	Slide 45: Multilayer Perceptron (MLP)
	Slide 46: Multilayer Perceptron (MLP)
	Slide 47: Optimization Objective
	Slide 48: Back-Propagation
	Slide 49: Back-Propagation
	Slide 50: Back-Propagation
	Slide 51: Training Process
	Slide 52: From Binary to Multiclass Classification
	Slide 53: What Makes Neural Networks Powerful?
	Slide 54: Neural Networks
	Slide 55: Recap: Bag-of-Words and N-Grams
	Slide 56: Bag-of-Words and N-Gram Features
	Slide 57: Words as Vectors
	Slide 58: Representing Words by Their Contexts
	Slide 59: Distributional Hypothesis
	Slide 60: Word Vectors from Word-Word Co-Occurrence Matrix
	Slide 61: Issues with Word-Word Co-Occurrence Matrix
	Slide 62: Pointwise Mutual Information
	Slide 63: Co-Occurrence Matrix with Positive PMI
	Slide 64: Sparse Vectors vs. Dense Vectors
	Slide 65: How to Get Dense Vectors?
	Slide 66: Count-Based Word Vectors

