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NLP Applications

1
How to formulate those problems?



Formulation

• Build an NLP model to learn the association between input 𝑥 and output 𝑦

• Input 𝑥: a sequence of symbols

• What’s the temperature now?

• I like this restaurant.

• Output 𝑦: label

• Category

• Structure

• Text

• …
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Text Classification
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• Input 𝑥 → Output 𝑦 (category)

𝑦 ∈ {𝑝𝑜𝑠, 𝑛𝑒𝑔} 𝑦 ∈ {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑓𝑟𝑎𝑢𝑑}
𝑦 ∈ {𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟, 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠, 
𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔, 𝐼𝑇 𝑠𝑒𝑟𝑣𝑖𝑐𝑒}



Structured Classification
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• Input 𝑥 → Output 𝑦 (structure)

• Multiple labels with dependency



Generation
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• Input 𝑥 → Output 𝑦 (text)

• Also called sequence-to-sequence tasks



Classification vs. Generation 

• There is no clear boundary between classification and generation

• Generation = Structured Token Classification
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𝑦 ∈ {𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠} 𝑦 ∈ {𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠}



Classification vs. Generation 

• There is no clear boundary between classification and generation

• Classification problems can be solved by generation
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What’s the sentiment of the following text: I very like this restaurant.

The sentiment is positive.



Supervised Learning

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Example 𝑥𝑖 ∈ 𝒳, label 𝑦𝑖 ∈ 𝐶

• Train a classifier(model) 𝑓: 𝒳 → 𝐶
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How to train?

Training Stage

Testing Stage

• Testing data 𝒟𝑡𝑒𝑠𝑡 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 }

• Make predictions ෤𝑦𝑖 = 𝑓(𝑥𝑖)

• Evaluate performance 
1

n
σ𝑖 𝑆(𝑦𝑖 , ෤𝑦𝑖) Accuracy, F1 Score, etc.



A General Framework for Text Classification
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦



Feature
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Text 𝑥
Classifier
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Label 𝑦

A General Framework for Text Classification
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• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words, n-grams, word embeddings, etc.
We will talk about them later!



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

A General Framework for Text Classification
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• Teach the model how to make prediction 𝑦

• Logistic regression, neural networks, CNN, RNN, LSTM, Transformers

We will talk about them later!



Bag-of-Words (BoW)

• Bag-of-Words (BoW)

• Consider text as a set of words

• Easy, no effort required
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦



Bag-of-Words (BoW)
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This restaurant is the best one in 
College Station

This

restaurant

is

the

best

one

in
College

Station

I study natural language processing 
everyday

study

I

processing

everyday

natural

language



Bag-of-Words (BoW)
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This restaurant is the best one in College Station

𝐱 = [0 1 1 0 0 1 0 1 1 …  0 1 1 0 1 1]

Feature vector 𝐱 is 
a binary vector

Each dimension represents one word, 
indicating the presence of word

The length of vector is 
the dictionary size 𝑉

Advantages and disadvantages?



Bag-of-Words (BoW)
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Bob likes Alice very much

Alice likes Bob very much

𝐱 = [0 1 1 0 0 1 …  0 1]

They will have the same BoW vector!

BoW fails to capture sentential structure

Any solutions?



N-Grams
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Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}

Trigram {Bob likes Alice, likes Alice very, Alice very much}

4-gram {Bob likes Alice very, likes Alice very much}



Bag-of-N-Grams

17

Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 …  0 0 0 1 …  1 1]𝐱 = [0 1 …  0 1 1 0 …  0 1]

BoW (unigram) features Bigram features

N-gram features capture more sentential structure

We can consider trigrams, 4-grams, …



Other Variants
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𝐱 = [0 1 1 0 0 1 …  0 1]Binary BoW

𝐱 = [0 2 1 0 0 4 …  0 3]Word Count

𝐱 = [0 0. 16 0.08 0 0 0.32 …  0 0.24]Word Frequency

𝐱 = [0 0. 48 0.02 0 0 0.15 …  0 0.88]TF-IDF

𝑓𝑤 ⋅ log
𝑁

𝑛𝑡Term Frequency 
(TF)

Inverse Document 
Frequency (IDF)



Bag-of-Words and Bag-of-N-Grams

• Bag-of-Words (BoW)

• A set of words

• Bag-of-N-Grams

• A set of n-grams
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

We will discuss “learnable” 
features later!



Feature
(Representation)

Text 𝑥
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(Model)

Label 𝑦

Logistic Regression
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• Logistic regression

• Find linear weights to map feature vector 𝐱 to label 𝑦



Logistic Regression

• Let’s start from binary classification

• Input: feature vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑]

• Output: label 𝑦 ∈ {0, 1}

• Find a linear decision boundary to classify 𝐱 into {0, 1}
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https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

https://blog.bigml.com/2016/09/28/logistic-regression-versus-decision-trees/



Logistic Regression
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Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0 𝑜𝑟 1

𝑧 = 𝐰 ⋅ 𝐱 + 𝑏

෤𝑦 = 𝑃 𝑦 = 1  𝐱) = 𝜎 𝑧

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏

Learnable parameters

𝜎 𝑡 =
1

1 + 𝑒−𝑡

Sigmoid Function

Decision boundary: = ቊ
1
0

If ෤𝑦 ≥ 0.5 

If ෤𝑦 < 0.5 

Convert to probability



How to Find The Best Parameters?
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Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏

Learnable parameters

Iterative Optimization Methods

Randomly initialize 
parameters

Evaluate 
“goodness” of 

parameters

Identify “good” 
updating direction 

Update parameters



Loss Function
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Iterative Optimization Methods

• For each training example 𝑥, 𝑦

• Output label probability is ෤𝑦 = 𝑃 𝑦 = 1  𝐱) = 𝜎 𝐰 ⋅ 𝐱 + 𝑏

ℒ𝐶𝐸(𝑦, ෤𝑦) = − 𝑦 log ෤𝑦 + 1 − 𝑦 log 1 − ෤𝑦

Cross Entropy Loss



Loss Function
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Iterative Optimization Methods

ℒ𝐶𝐸(𝑦, ෤𝑦) = − 𝑦 log ෤𝑦 + 1 − 𝑦 log 1 − ෤𝑦

Cross Entropy Loss

𝑦 = 1 and ෤𝑦 = 0.9 ℒ𝐶𝐸 = − 1 ⋅ log 0.9 + 0 ⋅ log 0.1 = − log 0.9 ≈ 0.105

𝑦 = 1 and ෤𝑦 = 0.1 ℒ𝐶𝐸 = − 1 ⋅ log 0.1 + 0 ⋅ log 0.9 = − log 0.1 ≈ 2.302

𝑦 = 0 and ෤𝑦 = 0.9 ℒ𝐶𝐸 = − 0 ⋅ log 0.9 + 1 ⋅ log 0.1 = − log 0.1 ≈ 2.302

𝑦 = 0 and ෤𝑦 = 0.1 ℒ𝐶𝐸 = − 0 ⋅ log 0.1 + 1 ⋅ log 0.9 = − log 0.9 ≈ 0.105

The lower the loss is, the more accurate the output probability is



Loss Function
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Iterative Optimization Methods

• Training data 𝒟𝑡𝑟𝑎𝑖𝑛 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

• Output labels probabilities ෤𝑦1, ෤𝑦2,…, ෤𝑦𝑚

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖 = −
1

𝑚
෍

𝑖

𝑦𝑖 log ෥𝑦𝑖 + 1 − 𝑦𝑖 log 1 − ෥𝑦𝑖

Cross Entropy Loss



Optimization Objective
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Iterative Optimization Methods

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖

Cross Entropy Loss

𝐰∗; 𝑏∗ = 𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏Parameters 𝜃 =

Optimization 
objective



Gradient
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Iterative Optimization Methods

𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

https://www.digitalocean.com/community/tutorials/intro-to-optimization-in-deep-learning-gradient-descent

𝜃(0) → 𝜃(1) → 𝜃(2) → ⋯ → 𝜃 𝑘 → ⋯ → 𝜃∗

∇𝜃(𝑡)ℒ𝑡𝑜𝑡𝑎𝑙  is a “good” direction 

to minimize the objective

𝜃(𝑡)

𝜃(𝑡+1)

∇𝜃(𝑡)ℒ𝑡𝑜𝑡𝑎𝑙



Gradient
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∇𝜃ℒ𝑡𝑜𝑡𝑎𝑙
𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
=

𝜕 −
1
𝑚

σ𝑖 𝑦𝑖 log ෤𝑦𝑖 + 1 − 𝑦𝑖 log 1 − ෤𝑦𝑖

𝜕𝐰𝑗

= −
1

𝑚
෍

𝑖

𝑦𝑖

𝜕 log 𝜎(𝑧𝑖) 

𝜕𝐰𝑗
+ 1 − 𝑦𝑖

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

෤𝑦𝑖 = 𝜎(𝑧𝑖)
𝑧𝑖 = 𝐰 ⋅ 𝐱𝑖 + 𝑏=

𝜕 −
1
𝑚

σ𝑖 𝑦𝑖 log 𝜎(𝑧𝑖) + 1 − 𝑦𝑖 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗



Gradient
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𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
= −

1

𝑚
෍

𝑖

𝑦𝑖

𝜕 log 𝜎(𝑧𝑖) 

𝜕𝐰𝑗
+ 1 − 𝑦𝑖

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗

𝜕 log 𝜎(𝑧𝑖) 

𝜕𝐰𝑗
=

1

𝜎 𝑧𝑖
⋅ 𝜎 𝑧𝑖 1 − 𝜎 𝑧𝑖 ⋅ 𝐱𝑖,𝑗 = 1 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

𝜕 log 1 − 𝜎(𝑧𝑖)

𝜕𝐰𝑗
=

1

1 − 𝜎 𝑧𝑖
⋅ −𝜎 𝑧𝑖 1 − 𝜎 𝑧𝑖 ⋅ 𝐱𝑖,𝑗 = −𝜎 𝑧𝑖 𝐱𝑖,𝑗 1 − 𝜎 𝑧

′
= −𝜎(𝑧)(1 − 𝜎(𝑧))

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰𝑗
= −

1

𝑚
෍

𝑖

𝑦𝑖 1 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 + 1 − 𝑦𝑖 (−𝜎 𝑧𝑖 𝐱𝑖,𝑗)

= −
1

𝑚
෍

𝑖

𝑦𝑖 − 𝜎 𝑧𝑖 𝐱𝑖,𝑗 =
1

𝑚
෍

𝑖

෤𝑦𝑖 − 𝑦𝑖 𝐱𝑖,𝑗



Gradient
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Iterative Optimization Methods

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖 𝐱𝑖

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖



Gradient Descent
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Iterative Optimization Methods

ℒ𝑡𝑜𝑡𝑎𝑙

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂 ∇𝐰ℒ𝑡𝑜𝑡𝑎𝑙

𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∇𝑏ℒ𝑡𝑜𝑡𝑎𝑙

Learning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/



Training Process
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Iterative Optimization Methods

Randomly initialize 
parameters

Evaluate 
“goodness” of 

parameters

Identify “good” 
updating direction 

Update parameters

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖; 𝐰 𝑡 , 𝑏(𝑡)

Cross Entropy Loss
𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝐰(𝑡)
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖 𝐱𝑖

𝜕ℒ𝑡𝑜𝑡𝑎𝑙

𝜕𝑏(𝑡)
= ෍

𝑖=1

𝑚

෥𝑦𝑖 − 𝑦𝑖

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂 ∇𝐰ℒ𝑡𝑜𝑡𝑎𝑙

𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∇𝑏ℒ𝑡𝑜𝑡𝑎𝑙



From Binary to Multiclass Classification
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• Logistic Regression for binary classification

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0 𝑜𝑟 1

𝑧 = 𝐰 ⋅ 𝐱 + 𝑏

Weight Vector 𝐰 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑑] Bias 𝑏
Learnable 

Parameters

𝑃 𝑦 = 1  𝐱) = 𝜎 𝑧

𝜎 𝑡 =
1

1 + 𝑒−𝑡

Sigmoid Function

Prediction = ቊ
1
0

If 𝑃 𝑦 = 1  𝐱) ≥ 0.5 

If 𝑃 𝑦 = 1  𝐱) < 0.5 



From Binary to Multiclass Classification
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• Logistic Regression for multiclass classification

Feature Vector 𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑑] Label 𝑦 = 0,1, … , 𝐶 − 1

𝑧𝑐 = 𝐰𝑐 ⋅ 𝐱 + 𝑏𝑐

Weight Vectors 𝐰𝑐 = [𝑤𝑐,1, 𝑤𝑐,2, 𝑤𝑐,3, … , 𝑤𝑐,𝑑] Bias 𝑏𝑐
Learnable 

Parameters

𝑃 𝑦 = 𝑐  𝐱) = softmax 𝑧𝑐

softmax 𝑧𝑐 =
𝑒𝑧𝑐

σ𝑡 𝑒𝑧𝑡

Softmax Function

Prediction = arg max
c

𝑃 𝑦 = 𝑐  𝐱)



Logistic Regression

• Logistic regression

• Find linear weights to map feature vector 𝐱 to label 𝑦

36
https://chatgpt.com/

https://www.researchgate.net/publication/344636757_CQNN_Convolutional_Quadratic_Neural_Networks

What if linear weights are not powerful enough?



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Neural Networks

37

• Neural Networks

• Find a non-linear decision boundary to map feature vector 𝐱 to label 𝑦



Biological Neurons
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Neuron activation: A neuron becomes active to transmit information 
when it receives sufficient input from other neurons

https://www.kdnuggets.com/2022/06/activation-functions-work-deep-learning.html



Neurons in Neural Networks
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Mimic the behavior of neurons to transmit information

𝑥1 𝑤1 𝑏

Σ
𝑥2 𝑤2

𝑥3 𝑤3

𝑥4 𝑤4

𝜑 𝑜

https://blog.devops.dev/exploring-activation-functions-in-deep-learning-properties-derivatives-and-impact-on-model-7585aad8a757

Input 𝐱 Weight 𝐰 Bias

Activation 
Function

Output

𝑜 = 𝜑 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏



Neurons vs. Logistic Regression
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𝑜 = 𝜑 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 ෤𝑦 = 𝜎 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

𝑥3

Neuron𝑤1,1
(1)

𝑤1,2
(1)

𝑤1,2
(1)

ℎ1
(1)

= 𝜑 ෍

𝑖

𝑤1,𝑖
(1)

𝑥𝑖 + 𝑏 = 𝜑 𝐰1
(1)

⋅ 𝐱 + 𝑏



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ2
(1)

= 𝜑 ෍

𝑖

𝑤2,𝑖
(1)

𝑥𝑖 + 𝑏 = 𝜑 𝐰2
(1)

⋅ 𝐱 + 𝑏

𝑤2,1
(1)

𝑤2,2
(1)

𝑤2,2
(1)

Neuron

Neuron



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

𝐡(1) = 𝜑 𝐖(1)𝐱 + 𝐛(1)



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝐡(2) = 𝜑 𝐖(2)𝐡(1) + 𝐛(2)



Multilayer Perceptron (MLP)

45

𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

𝐡(3) = 𝜑 𝐖(3)𝐡(2) + 𝐛(3)



Multilayer Perceptron (MLP)
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦

෤𝑦 = 𝜎 𝐖(𝑜)𝐡(3) + 𝐛(𝑜)
Decision boundary: = ቊ

1
0

If ෤𝑦 ≥ 0.5 

If ෤𝑦 < 0.5 



Optimization Objective
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖

Cross Entropy Loss

𝜃∗ = arg min
𝜃

ℒ𝑡𝑜𝑡𝑎𝑙

Parameters 𝜃 = {𝐖 1 , 𝐖 2 , 𝐖 3 , 𝐖 𝑜 ,

𝐛 1 , 𝐛 2 , 𝐛 3 , 𝐛 𝑜 },



Back-Propagation
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐖(𝑜)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐖(𝑜)

෤𝑦 = 𝜑 𝐖(𝑜)𝐡(3) + 𝐛(𝑜)

𝜕ℒ

𝜕𝐛(𝑜)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐛(𝑜)



Back-Propagation
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐖(3)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐖(3)

𝐡(3) = 𝜑 𝐖(3)𝐡(2) + 𝐛(3)

𝜕ℒ

𝜕𝐛(3)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐛(3)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)



Back-Propagation
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦
𝜕ℒ

𝜕 ෤𝑦

𝜕ℒ

𝜕𝐖(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐖(1)

𝜕ℒ

𝜕𝐛(1)
=

𝜕ℒ

𝜕𝐡(1)
⋅

𝜕𝐡(1)

𝜕𝐛(1)

𝜕ℒ

𝜕𝐡(3)
=

𝜕ℒ

𝜕 ෤𝑦
⋅

𝜕 ෤𝑦

𝜕𝐡(3)

𝜕ℒ

𝜕𝐡(2)
=

𝜕ℒ

𝜕𝐡(3)
⋅

𝜕𝐡(3)

𝜕𝐡(2)

𝜕ℒ

𝜕𝐡(1)
=

𝜕ℒ

𝜕𝐡(2)
⋅

𝜕𝐡(2)

𝜕𝐡(1)



Training Process
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Iterative Optimization Methods

Randomly initialize 
parameters

Evaluate 
“goodness” of 

parameters

Identify “good” 
updating direction 

Update parameters

ℒ𝑡𝑜𝑡𝑎𝑙 = −
1

𝑚
෍

𝑖

ℒ𝐶𝐸 𝑦𝑖 , ෥𝑦𝑖; 𝐰 𝑡 , 𝑏(𝑡)

Cross Entropy Loss
𝜕ℒ

𝜕𝐖(1)
,

𝜕ℒ

𝜕𝐖(2)
, … ,

𝜕ℒ

𝜕𝐖(𝑜)

𝜕ℒ

𝜕𝐛(1)
,

𝜕ℒ

𝜕𝐛(2)
, … ,

𝜕ℒ

𝜕𝐛(𝑜)

𝐖(1) ← 𝐖(1) − 𝜂
𝜕ℒ

𝜕𝐖(1)

𝐛(1) ← 𝐛(1) − 𝜂
𝜕ℒ

𝜕𝐛(1)



From Binary to Multiclass Classification
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𝑥1

ℎ1
(1)

𝑥2

ℎ2
(1)

𝑥3

ℎ3
(1)

ℎ4
(1)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

ℎ4
(3)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

෤𝑦1

Prediction = arg max
c

෤𝑦𝑐

෤𝑦2

෤𝑦3

ℒ𝐶𝐸(𝑦, ෤𝑦) = − ෍

𝑐=0

𝐶

𝑦𝑐 log 𝑃 𝑦 = 𝑐  𝐱)

Multiclass Cross Entropy Loss



What Makes Neural Networks Powerful?
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Introduce nonlinearity

Nonlinear
Transform

Nonlinear
Transform

Nonlinear
Transform



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Neural Networks
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• Neural Networks

• Find a non-linear decision boundary to map feature vector 𝐱 to label 𝑦



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: Bag-of-Words and N-Grams

55

• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words and n-grams
We will discuss “learnable” 

features today!



Bag-of-Words and N-Gram Features
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Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 …  0 0 0 1 …  1 1]𝐱 = [0 1 …  0 1 1 0 …  0 1]

BoW (unigram) features Bigram features

Encode a text to one vector

We can consider trigrams, 4-grams, …



Words as Vectors
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Bob     likes     Alice     very     much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
𝑊 =

 

Advantages?

Use one vector to represent each word 

Text = A list of vectors



Representing Words by Their Contexts
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Distributional hypothesis: words that occur in similar contexts tend to have 
similar meanings

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking



Distributional Hypothesis
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C1: A bottle of ___ is on the table.

C2: Everybody likes ___.

C3: Don’t have ___ before you drive.

C4: I bought ___ yesterday.

juice

C1 C2 C3 C4

1 1 0 1

loud 0 0 0 0

motor-oil 1 0 0 1

chips 0 1 0 1

choices 0 1 0 0

wine 1 1 1 1

Words that occur in similar contexts tend to have similar meanings



Word Vectors from Word-Word Co-Occurrence Matrix

• Main idea: Similar contexts → Similar word co-occurrence

• Collect a bunch of texts and compute co-occurrence matrix

• Words can be represented by row vectors

60

shark computer data eat result sugar

apple 0 0 0 8 0 2

bread 0 0 0 9 0 1

digital 0 6 5 0 2 0

information 0 4 10 0 2 0

Word Vector High cosine 
similarity!

cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Most entries are 0s → sparse vectors
Low cosine 
similarity!



Issues with Word-Word Co-Occurrence Matrix

• Using raw frequency counts is not always very good (why?)

• Some frequent words (e.g., the, it, or they) can have large counts

61

shark computer data eat result sugar the it

apple 0 0 0 8 0 2 104 67

bread 0 0 0 9 0 1 95 76

digital 0 6 5 0 2 0 101 65

Similarity(apple, bread) ≈ 0.994710

Similarity(apple, digital) ≈ 0.995545

Similarity is dominated by frequent words

Solution: use a weighted function instead of raw counts



Pointwise Mutual Information
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Pointwise Mutual Information (PMI)

Do events 𝑥 and 𝑦 co-occur more or less than if they were independent?

PMI 𝑥, 𝑦 = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI = 0 → 𝑥 and 𝑦 occur independently → co-occurrence is as expected

• PMI > 0 → 𝑥 and 𝑦 co-occur more often than expected

• PMI < 0 → 𝑥 and 𝑦 co-occur less often than expected



Co-Occurrence Matrix with Positive PMI

63

PPMI 𝑥, 𝑦 = max log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
, 0

Positive Pointwise Mutual Information (PPMI)

shark computer data eat result sugar the it

apple 0 0 0 1.80 0 0.35 0.08 0

bread 0 0 0 1.54 0 0.29 0 0.14

digital 0 1.47 1.22 0 0.61 0 0.10 0.06

Similarity(apple, bread) ≈ 0.995069

Similarity(apple, digital) ≈ 0.010795



Sparse Vectors vs. Dense Vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Can we have short short (50-300 dimensional) and dense (real-valued) vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors may generalize better than explicit counts

• Sparse vectors can’t capture high-order co-occurrence

• 𝑤1 co-occurs with “car”, 𝑤2 co-occurs with “automobile”

• They should be similar, but they aren’t, because “car” and “automobile” are distinct 
dimensions

• In practice, they work better!

64



How to Get Dense Vectors?

• Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix

65

Only keep the top k singular values

Word Vector



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Count-Based Word Vectors

66

• Use one vector to represent each word 

• Get word vectors by singular value decomposition (SVD) of PPMI weighted 
co-occurrence matrix
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