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LaTeX Assignment

• LaTeX Assignment (1%)

• Due: Sep 11, 11:59pm
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Topic Study

• Topic Study (30%)

• Literature Review (15%) [Due: 10/2]

• Topic Presentation (15%)

• Email your slides to the instructor at least 2 days before your presentation
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Topic Sign-Up

• 16 students

• 12 topics

• Each team can have 1 or 2 people
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Topic Sign-Up

• Sign-up: https://tinyurl.com/2p9mr2wa

• Log in with TAMU account

• Due: Sep 10 before lecture
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https://tinyurl.com/2p9mr2wa


Topic Sign-Up

• We will finalize the topic assignment in class on Sep 10

• Decision Process:

• Preferences will be handled in order (Preference 1 → Preference 2 → …)

• If you are the only one choosing a topic, you get it

• If multiple teams choose the same topic, we will draw a lottery

• Move on to the next preference order

• So be strategic when choosing your preferences
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About Teams 

• Topic Study (30%) (a team of 1 or 2 people)

• Literature Review (15%)

• Topic Presentation (15%)

• Course Project (49%) (a team of 1 or 2 people)

• Project Proposal (5%)

• Project Highlight Presentation (5%)

• Midterm Report (10%)

• Final Presentation (12%)

• Final Report (17%)
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Not necessary to be the same team



If You Are Looking for Course Project Topics

• The 20th International Workshop on Semantic Evaluation (SemEval-2026)

• https://semeval.github.io/SemEval2026/tasks
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https://semeval.github.io/SemEval2026/tasks
https://semeval.github.io/SemEval2026/tasks


Question?
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Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Recap: A General Framework for Text Classification
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• Teach the model how to understand example 𝑥

• Convert the text to a mathematical form

• The mathematical form captures essential characteristics of the text

• Bag-of-words, n-grams, word embeddings, etc.



Topic Study

• Topic Study (30%)

• Literature Review (15%) [Due: 10/2]

• Topic Presentation (15%)

• Email your slides to the instructor at least 2 days before your presentation
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Recap: Bag-of-N-Grams
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Bob likes Alice very much Alice likes Bob very much

𝐱 = [0 1 …  0 0 0 1 …  1 1]𝐱 = [0 1 …  0 1 1 0 …  0 1]

BoW (unigram) features Bigram features

N-gram features capture more sentential structure

We can consider trigrams, 4-grams, …



Recap: Words as Vectors
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Bob     likes     Alice     very     much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|
𝑊 =

 

Use one vector to represent each word 

Text = A list of vectors



Recap: Representing Words by Their Contexts
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Distributional hypothesis: words that occur in similar contexts tend to have 
similar meanings

J.R.Firth 1957

• “You shall know a word by the company it keeps”

• One of the most successful ideas of modern statistical NLP!

These context words will represent banking



Recap: Word Vectors from Co-Occurrence Matrix

• Main idea: Similar contexts → Similar word co-occurrence

• Collect a bunch of texts and compute co-occurrence matrix

• Words can be represented by row vectors
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shark computer data eat result sugar

apple 0 0 0 8 0 2

bread 0 0 0 9 0 1

digital 0 6 5 0 2 0

information 0 4 10 0 2 0

Word Vector High cosine 
similarity!

cos 𝐮, 𝐯 =
𝐮 ∙ 𝐯

𝐮 𝐯

Low cosine 
similarity!



Recap: Co-Occurrence Matrix with Positive PMI
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PPMI 𝑥, 𝑦 = max log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
, 0

Positive Pointwise Mutual Information (PPMI)

shark computer data eat result sugar the it

apple 0 0 0 1.80 0 0.35 0.08 0

bread 0 0 0 1.54 0 0.29 0 0.14

digital 0 1.47 1.22 0 0.61 0 0.10 0.06

Similarity(apple, bread) ≈ 0.995069

Similarity(apple, digital) ≈ 0.010795



Recap: From Sparse Vectors to Dense Vectors

• Singular value decomposition (SVD) of PPMI weighted co-occurrence matrix
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Only keep the top k singular values

Word Vector



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Count-Based Word Vectors
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• Use one vector to represent each word 

• Get word vectors by singular value decomposition (SVD) of PPMI weighted 
co-occurrence matrix



Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Prediction-Based Word Vectors
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• Can we learn word vectors directly from text?



Word2Vec

• Efficient Estimation of Word Representations in Vector Space, 2013

• 40000+ citations
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Word Embeddings as Learning Problem

• Learning vectors (also called embeddings) from text for representing words

• Input: 

• A large text corpus

• Wikipedia + Gigaword 5: 6B tokens

• Twitter: 27B tokens

• Common Crawl: 840B tokens

• Vocabulary 𝒱

• Vector dimension 𝑑 (e.g., 300)

• Output:

• Mapping function 𝑓: 𝒱 → ℝ𝑑
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𝑣𝑎𝑝𝑝𝑙𝑒 =

−0.224
0.479
0.871

−0.231
0.101

𝑣𝑑𝑖𝑔𝑖𝑡𝑎𝑙 =

0.257
0.587

−0.972
−0.456
−0.002



Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚
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Use center word 𝑤𝑡 to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 

Words that occur in similar contexts tend to have similar meanings



Word2Vec: Overview

• Main idea: we want to use words to predict their context words

• Context: a fixed window of size 𝑚
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Use center word 𝑤𝑡  to predict context words 𝑤𝑡−𝑚 to 𝑤𝑡+𝑚 

𝑃(𝑏|𝑎) = given the center word 
is 𝑎, what is the probability that 

b is a context word?

Classification Problem

𝑃(⋅ |𝑎) is a probability 
distribution defined over 𝒱:

෍

𝑤∈𝒱

𝑃(𝑤|𝑎) = 1

We will define the distribution soon!



Word2Vec: Overview
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Collect into training data
(into, problems)
(into, turning)
(into, banking)

(into, crises)

Collect into training data
(banking, turning)

(banking, into)
(banking, crises)

(banking, as)

𝑃(problems|into)× 𝑃(turning|into)× 𝑃(banking|into)× 𝑃(crises|into) 

Maximize the likelihood

× 𝑃(turning|banking)× 𝑃(into|banking)× 𝑃(crises|banking)× 𝑃(as|banking) 



Word2Vec: Likelihood

For each position 𝑡 = 1, … , 𝑇, predict context words within a window of fixed 
size 𝑚, given center word 𝑤𝑡
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𝜃 all parameters to be optimized

Likelihood for all context words given center word 𝑤𝑡For each position 𝑡 = 1, … , 𝑇

= ℒ 𝜃 =  ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)Likelihood

Probability over all vocabulary 𝑉 



Word2Vec: Objective Function

The objective function 𝐽(𝜃) is the (average) negative log likelihood
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𝐽 𝜃 = −
1

𝑇
log ℒ 𝜃 = −

1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

We minimize the objective function (also called cost or loss function)



How to Define Probability?

Question: how to calculate 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)?
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Answer: we have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

We consider Inner product 𝐮𝑤𝑡
∙ 𝐯𝑤𝑡+𝑗

 as the score to measure how likely the 

context word 𝑤𝑡+𝑗  appears with the center word 𝑤𝑡, the larger the more likely!

𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

𝜃 = 𝐮𝑘 , 𝒗𝑘  all parameters



How to Define Probability?

27

We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

The score to indicate how likely the context 
word 𝑤𝑡+𝑗  appears with the center word 𝑤𝑡

Normalize over entire vocabulary
to give probability distribution

Softmax function: mapping arbitrary values to a probability distribution

softmax 𝑡 =
𝑒𝑡

σ𝑐 𝑒𝑐



Why Two Sets of Vectors?
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We have two sets of vectors for each word in the vocabulary

𝐮𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a center word

𝐯𝑤 ∈ ℝ𝑑: word vector when 𝑤 is a context word

𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃) =
exp(𝐮𝑤𝑡

∙ 𝐯𝑤𝑡+𝑗
)

σ𝑘∈𝑉 exp(𝐮𝑤𝑡
∙ 𝐯𝑘)

• Scores can be asymmetric

• It is not likely that a word appears in its own context



How to Train Word Vectors?
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𝜃 = 𝐮𝑘 , 𝒗𝑘  Parameters:

Objective function:

Our goal: find parameters 𝜃 that minimize the objective function 𝐽 𝜃

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

Solution: stochastic gradient descent (SGD)

• Randomly initialize parameters 𝜃

•  For each iteration 𝜃 ⟵ 𝜃 − 𝜂 ∇𝜃  𝐽 𝜃

GradientLearning step

https://insightfultscript.com/collections/programming/machine-learning/sgd/



Computing the Gradients
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𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

For simplicity, we consider one pair of center/context words (𝑜, 𝑐)

Objective function

=
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑚≤𝑗≤𝑚,𝑗≠0

− log 𝑃 𝑤𝑡+𝑗  𝑤𝑡 ; 𝜃)

The gradients can be calculated separately!

𝑦 = − log 𝑃 𝑐 𝑜 ; 𝜃) = − log
exp(𝐮𝑜 ∙ 𝐯𝑐)

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝑦

𝜕𝐮𝑜

𝜕𝑦

𝜕𝒗𝑐

We need to compute this!



= −𝐯𝑐 +
σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)
= −𝐯𝑐 + ෍

𝑘∈𝑉

exp 𝐮𝑜 ∙ 𝐯𝑘 𝐯𝑘

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

Computing the Gradients
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𝜕𝑦

𝜕𝐮𝑜
=

𝜕 −𝐮𝑜 ∙ 𝐯𝑐 + log σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

𝜕𝐮𝑜

𝑦 = − log 𝑃 𝑐 𝑜) = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐮𝑜 ∙ 𝐯𝑐

= −𝐯𝑐 +
σ𝑘∈𝑉

𝜕exp(𝐮𝑜 ∙ 𝐯𝑘)
𝜕𝐮𝑜

σ𝑘∈𝑉 exp(𝐮𝑜 ∙ 𝐯𝑘)

= −𝐯𝑐 + ෍

𝑘∈𝑉

𝑃(𝑘|𝑜) 𝐯𝑘
𝜕𝑦

𝜕𝐯𝑘
= −1 𝑘 = 𝑐 𝐮𝑜 + 𝑃 𝑘 𝑜)𝐮𝑜

Similar calculation step

𝜕log(𝑥)

𝜕𝑥
=

1

𝑥

𝜕exp(𝑥)

𝜕𝑥
= exp 𝑥



Training Process

• Randomly initialize parameters 𝐮𝑖 , 𝐯𝑖

• Walk through the training corpus and collect training data 𝑜, 𝑐
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𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
 ∀𝑘 ∈ 𝑉



Negative Sampling

Issue: every time we get one pair of 𝑜, 𝑐 , we have to update 𝐯𝑘  with

all the words in the vocabulary. 
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𝐮𝑜 ⟵ 𝐮𝑜 − 𝜂
𝜕𝑦

𝜕𝐮𝑜

𝐯𝑘 ⟵ 𝐯𝑘 − 𝜂
𝜕𝑦

𝜕𝐯𝑘
 ∀𝑘 ∈ 𝑉

Negative sampling: instead of considering all the words in 𝑉, we randomly 
sample 𝐾(5-20) negative examples

𝑦 = − log
exp 𝐮𝑜 ∙ 𝐯𝑐

σ𝑘∈𝑉 exp 𝐮𝑜 ∙ 𝐯𝑘
= − log exp 𝐮𝑜 ∙ 𝐯𝑐 + log ෍

𝑘∈𝑉

exp(𝐮𝑜 ∙ 𝐯𝑘)  Softmax

𝑦 = − log 𝜎 𝐮𝑜 ∙ 𝐯𝑐 − ෍

𝑖=1

𝐾

𝔼𝑗~𝑃(𝑤) log 𝜎 −𝐮𝑜 ∙ 𝐯𝑗Negative sampling

𝜎 𝑥 =
1

1 + 𝑒−𝑥



Continuous Bag of Words (CBOW) vs Skip-Grams
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Continuous Bag of Words (CBOW)
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ℒ 𝜃 =  ෑ

𝑡=1

𝑇

𝑃 𝑤𝑡 𝑤𝑡+𝑗 ) , −𝑚 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 0

ത𝐯𝑡 =
1

2𝑚
෍

−𝑚≤𝑗≤𝑚,𝑗≠0

𝐯𝑡+𝑗

𝑃 𝑤𝑡 𝑤𝑡+𝑗 ) =
exp(𝐮𝑤𝑡

∙ ത𝐯𝑡)

σ𝑘∈𝑉 exp(𝐮𝑘 ∙ ത𝐯𝑡)



GloVe: Global Vectors
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GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

Idea: capture ratios of co-occurrence probabilities as linear meaning 
components in a word vector space

𝑤𝑖 ∙ 𝑤𝑗 = log 𝑃 𝑖 𝑗)Log-bilinear model

𝑤𝑖 ∙ (𝑤𝑎 − 𝑤𝑏) =
log 𝑃 𝑥 𝑎)  

log 𝑃 𝑥 𝑏)  
Vector difference

Training faster and scalable to very large corpora!

𝐽 = ෍

𝑖,𝑗=1

𝑉

𝑓 𝑋𝑖𝑗 𝑤𝑖
⊤ ෥𝑤𝑗 + 𝑏𝑖 + ෨𝑏𝑗 − log 𝑋𝑖𝑗

2

Global co-occurrence statistics



FastText: Sub-Word Embeddings

Enriching Word Vectors with Subword Information (Bojanowski et al. 2017)
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Similar as Skip-gram, but break words into n-grams with n = 3 to 6

where

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>

5-grams: <wher, where, here>

6-grams: <where, where>

Replace 𝐮𝑖 ∙ 𝐯𝑗  with ෍

𝑔∈𝑛−𝑔𝑟𝑎𝑚𝑠(𝑤𝑖)

𝐮𝑔 ∙ 𝐯𝑗



Trained Word Vectors Are Available

• Word2Vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/
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https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Prediction-Based Word Vectors

39

• Learn word vectors directly from text

• Word2Vec (Skip-Gram and CBOW)

• GloVe

• FastText



Intrinsic Evaluation: Word Analogy
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Word analogy

man: woman ≈ king: ? arg max
𝑤

cos(𝐮𝑤 , 𝐮𝑤𝑜𝑚𝑎𝑛 − 𝐮𝑚𝑎𝑛 + 𝐮𝑘𝑖𝑛𝑔)

Paris: France ≈ London: ?

bad: worst ≈ cool: ?



Intrinsic Evaluation: Word Analogy
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Intrinsic Evaluation: Word Analogy
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Intrinsic Evaluation: Word Analogy

43
https://sanjayc.medium.com/word2vec-analogical-reasoning-d47d3a66b9fb



𝑊 =

 

Feature
(Representation)

Text 𝑥
Classifier
(Model)

Label 𝑦

Extrinsic Evaluation: Downstream Performance
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Bob     likes     Alice     very     much

|
𝑤𝑏𝑜𝑏

|

|
𝑤𝑙𝑖𝑘𝑒𝑠

|

|
𝑤𝐴𝑙𝑖𝑐𝑒

|

|
𝑤𝑣𝑒𝑟𝑦

|

|
𝑤𝑚𝑢𝑐ℎ

|

𝑤𝑎𝑣𝑔

Average

Bag-of-Words (word vector version)



Question?
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Language Models

46



What are Language Models?

• A probabilistic model of a sequence of words

• Evaluate the probability of whether a text is acceptable

• How likely are the following sentences?

47

The dog is barking at the stranger in the yard.

Yesterday, I went to the park and saw a group of children playing soccer.

The sky colorful because painted an artist.

Cats upon they chairs sleeping their dreams fall.

Plorp zix flanned the quibble through treemunk.



Language Models

• Learn the probability distribution over texts 𝑥 = 𝑤1, 𝑤2, … , 𝑤𝑙 ∈ 𝒳

48

𝑃 𝑥 = 𝑃 𝑤1, 𝑤2, … , 𝑤𝑙

Sample Space 𝒳
(Finite pieces of text)

The dog is barking at the stranger in the yard.

What’s up?

I love natural language processing.

Large language models are amazing.

I love dogs.

Yesterday, I went to the park and saw a group of 
children playing soccer.



What Can Language Models Do?

• Score texts

49

𝑃(The dog is barking at the stranger in the yard.)

𝑃(Cats upon they chairs sleeping their dreams fall.)

→ High

→ Low

• Generate texts

෤𝑥 ~ 𝑃 𝒳



Auto-Regressive Language Models
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𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 = 𝑃 𝑤1 𝑃 𝑤2, 𝑤3, … , 𝑤𝑙|𝑤1

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1) 𝑤3, … , 𝑤𝑙|𝑤1, 𝑤2

= 𝑃 𝑤1 𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1, 𝑤2) 𝑤4, … , 𝑤𝑙|𝑤1, 𝑤2, 𝑤3

= ෑ

𝑖=1

𝑙

𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑃(She likes to go hiking) = 𝑃(She) ⋅ 𝑃(likes|She) ⋅ 𝑃(to|She likes)

⋅ 𝑃(go|She likes to) ⋅ 𝑃(hiking|She likes to go)



Auto-Regressive Language Models
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𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 = ෑ

𝑖=1

𝑙

𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

ContextNext Token

Next token prediction problem based on context

Challenge: How to predict 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)?



Unigram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ 𝑃 𝑤1 𝑃 𝑤2 𝑃 𝑤3 … 𝑃 𝑤𝑙

Similar to the concept of bag-of-words!

How to calculate 𝑃(𝑤𝑖)?

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖)

σ𝑡 𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑡)



Bigram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ 𝑃 𝑤1 𝑃 𝑤2|𝑤1 𝑃 𝑤3|𝑤2 𝑃(𝑤4|𝑤3) … 𝑃 𝑤𝑙|𝑤𝑙−1

The prediction of the next token depends only on the 
previous token

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−1)



Trigram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ 𝑃 𝑤1 𝑃 𝑤2|𝑤1 𝑃 𝑤3|𝑤1, 𝑤2 𝑃(𝑤4|𝑤2, 𝑤3) … 𝑃 𝑤𝑙|𝑤𝑙−2, 𝑤𝑙−1

The prediction of the next token depends on the 
previous two tokens

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−2, 𝑤𝑖−1)



N-Gram Language Models
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Assumption: 𝑃 𝑤𝑖 𝑤1, 𝑤2, … , 𝑤𝑖−1 ≈ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

The prediction of the next token depends on the 
previous n tokens

A count-based solution: Collect training corpus and count

𝑃 𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1 =
𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1, 𝑤𝑖)

𝐶𝑡𝑟𝑎𝑖𝑛(𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)



How to Evaluate Language Models?

• A good language model should assign higher probability to typical, 
grammatically correct sentences

• Train a language model on a suitable training corpus

• Assumption: observed sentences ≈ good sentences

• Test on different, unseen corpus

• The higher probability that the language model assigns to the test set, the 
better (why?)

• Evaluation metric: Perplexity

56



Perplexity (PPL)
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𝑃 𝒳 = ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖)Likelihood The higher, the better

log 𝑃 𝒳 = ෍

𝑖=1

𝑛

log 𝑃(𝑥𝑖)Log-Likelihood The higher, the better

𝑊𝐿𝐿 𝒳 =
1

𝑊
෍

𝑖=1

𝑛

log 𝑃(𝑥𝑖)Per-Word Log-Likelihood

The number of words 
in the test corpus

The higher, the better

For a corpus 𝒳 with sentences 𝑥1, 𝑥2, … , 𝑥𝑛



Perplexity (PPL)
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𝑒−𝑊𝐿𝐿(𝒳)Perplexity The lower, the better

𝑊𝐿𝐿 𝒳 =
1

𝑊
෍

𝑖=1

𝑛

log 𝑃(𝑥𝑖)

Computed by language model

𝑃 𝑤𝑗 𝑤1, 𝑤2, … , 𝑤𝑗−1 ≈ 𝑃(𝑤𝑗)

Unigram Language Model

𝑃 𝑥 = ෑ

𝑗

𝑃(𝑤𝑗)

For a corpus 𝒳 with sentences 𝑥1, 𝑥2, … , 𝑥𝑛

𝑊𝐿𝐿 𝒳 =
1

𝑊
෍

𝑖

෍

𝑗

log 𝑃(𝑤𝑖,𝑗)

Unigram Language Model

Minimizing perplexity → maximizing probability of corpus



Perplexity (PPL)
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https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word



Text Generation with Language Models
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𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙 ≈ ෑ

𝑖

𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)

Trigram Language Model

• Generate the first word 𝑤1 ~ 𝑃(𝑤)

• Generate the second word 𝑤2 ~ 𝑃(𝑤|𝑤1) 

• Generate the third word 𝑤3 ~ 𝑃(𝑤|𝑤1, 𝑤2) 

• Generate the fourth word 𝑤4 ~ 𝑃(𝑤|𝑤2, 𝑤3) 

• Generate the fifth word 𝑤5 ~ 𝑃(𝑤|𝑤3, 𝑤4) 

• …

• Until the end of the sentence <eos>



Generation Examples
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Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”
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