CSCE 689: Special Topics in Trustworthy NLP

Lecture 4: Convolutional Neural Network, Recurrent Neural Network

Kuan-Hao Huang
khhuang@tamu.edu

i

(Some slides adapted from Chris Manning, Abigail See, Karthik Narasimhan, and Dangi Chen)

LaTeX Assignment

- LaTeX Assignment (1%)
« Due: Sep 11, 11:59pm

CSCE 689: KIEX Assignment

Your Name
Your UID and email

Overview

This assignment is designed to give you prac-
tice with IIEX, which you are expected to use
for your literature review, project proposal, and
final report in this course.

Instructions

For this assignment, you will create a PDF contain-
ing your answers using I&TX. If this is your first
time working with I£IEX, we recommend starting
with this short tutorial, which covers the basic fea-
tures you will need for this course. Please use the
Association for Computational Linguistics I&TEX
template (link), a template widely used in major
NLP conferences. We suggest using Overleaf as
your online editor, since it automatically manages
packages for you.

By default, the template is set to review mode.
To switch to final mode, change:

Review Mode (Default)

\usepackagel[review]{acl}

to:

\usepackage[final]{acl}

This allows you to display the author information.
Be sure to include your name, UIN, and email.
The following sections contain questions on
some commonly used IZIEX commands. There
are a total of 100 points for this assignment. Please
answer each question in a separate section, and
submit the final PDF generated using IXTX.

1 Including Equations [20pts]

Typeset the following expression using IATEX:

AL 1
Ol _ __Z(y" — (=) %y
i=1

ow; m 4

2 Including Images [20pts]

Select a picture of a cat and include it with a cap-
tion. The figure below is provided as an example.

Figure 1: This is a cute cat!

3 Including Tables [20pts]

Create a table that displays your name, UIN, and
email. You can follow the example below as a
template.

Name | Kuan-Hao Huang
UIN 123456789
Email | khhuang @tamu.edu

Table 1: Example table.

4 Including Lists [20pts]

Create a list that displays your name, UIN, and
email. You can follow the example below as a
template.

* Name: Kuan-Hao Huang
+ UIN: 123456789
+ Email: khhuang @tamu.edu
5 Including Citations [20pts]

Use BibTex to include the following paper: Paper 1
(Vaswani et al., 2017) and Paper 2 (Devlin et al.,
2019). You can learn more about BibTex here.

Top

Team
Example
1

W 0o N O U WwN

T S G S Y
~N o Ok WN = O

Ic Sign-Up

. Sign-up: https://tinyurl.com/2p9mr2wa

- Log in with TAMU account
« Due: Sep 10 before lecture

Member 1

First_name Last_name
Kunal Jain

Muhan Gao

Serhii Honcharenko
Oscar Chew

Junggeun Do

Jiongran Wang

Sicong Liang

Kowsalya Balamuralei Umamaheswari
Yi Wen

Quang Nguyen

Aaron Xu

Bhaskar Ruthvik Bikkina

Member 2 (optional)
First_name Last_name

Preference 1

4

W 0 W O U W

Put Preference with Topic IDs

10
12
6

10

10

1

Preference 2

Preference 3

1
8
4
4
11
11
10
3
12
7
4
7
12

Preference 4

7

N N o o

Preference 5

3
1
10

~N B~ N 00O

10

Preference 6
9
10
7
1
10
6
2

g o =

Preference 7
8
9
8

12

1

Preference 8
6

1

1

Preference 9
12

12

https://tinyurl.com/2p9mr2wa

Recap: Language Models

- Learn the probability distribution over texts x = [wy,w,, ...,w;] € X

P(x) = P(wy,wy, ..., w;)

The dog is barking at the stranger in the yard.

What’s up? /
\

&
<«

| love dogs.

Sample Space X
(Finite pieces of text)

Large language models are amazing. //" '\

I love natural language processing. Yesterday, | went to the park and saw a group of

children playing soccer.

Recap: Auto-Regressive Language Models

P(wy, Wy, ws, ...,w;) = P(wy)P(w,, ws, ..., w;|wy)

= P(W1) P(wy|lwq)(ws, ..., wi|wy, W)

= P(W1) P(Wz|w1) P (W3 |wy, wp)(Wy, .., wi|wy, Wy, ws)

l
— HP(WilwliWZI ""Wi—l)
=1

P(She likes to go hiking) = P(She) - P(likes|She) - P(to|She likes)
- P(go|She likes to) - P(hiking|She likes to go)

Recap: N-Gram Language Models

Assumption: P(w;|wy, Wy, ..., Wi_1) = P(W;|W;_y41, ooy Wi—1)

P(Wl:WZJWSJ "'in) ~ HP(Wilwi—n+1' ""Wi—l)
[

The prediction of the next token depends on the
previous n tokens

A count-based solution: Collect training corpus and count

Ctrain (Wi—n+1: oy Wiq, Wi)
Ctrain (Wi—n+1: ey Wi—l)

P(Wilwi—n+1' ""Wi—l) —

Recap: What Can Language Models Do?

« Score texts

P(The dog is barking at the stranger in the yard.)
P(Cats upon they chairs sleeping their dreams fall.)

« (Generate texts

X~ P(X)

'\

— High
- Low

|

Compute perplexity

Sample from word distribution

N-Gram Language Models

Assumption: P(w;|wy, Wy, ..., wi_1) = P(W;|W;_p41, ooy Wi—1)

P(Wl:WZIWSJ '"JWl) ~ HP(Wilwi—n+1i ""Wi—l)
l

The prediction of the next token depends on the
previous n tokens

A count-based solution: Collect training corpus and count

Ctrain (Wi—n+1: oy Wiq, Wi)
Ctrain (Wi—n+1») Wi—1)

PWilWi_ni1, s Wiq) =

Any Problems?

Unseen Patterns in Training Corpus

Not all n-grams in the test set will be observed in training corpus

Training corpus
- | like apples
- | love oranges

Test set

- | love apples
- | like oranges

This problem becomes severe when nis large

Laplace Smoothing

- Handle sparsity by making sure all probabilities are non-zero in our model

« Justadd a to all counts and renormalize

Bigram language model before smoothing

Ctrain (Wi— 1 Wi)
Ctr ain (Wi -1)

P(w;lw;_1) =

Bigram language model after smoothing

Ctrain(Wi—b Wi) +a
Ctrain(Wi—l) + a|V|

P(wilw;_1) =

Linear Interpolation

P(Wi|Wi—1,Wi—z) = L P(wi|w;_1, w;_5)
+A, P(w;|w;_1)

+/13P(Wl)
zlli —_ 1
L

Strong empirical performance!

Trigram
Bigram

Unigram

10

N-Gram Language Models

Assumption: P(w;|wy, Wy, ..., wi_1) = P(W;|W;_p41, ooy Wi—1)

P(Wl:WZIWSJ '"JWl) ~ HP(Wilwi—n+1i ""Wi—l)
l

The prediction of the next token depends on the
previous n tokens

A count-based solution: Collect training corpus and count

Ctrain (Wi—n+1: oy Wiq, Wi)
Ctrain (Wi—n+1») Wi—l)

PWilWi_ni1, s Wiq) =

Can we compute the probability in a different way?

11

Neural Language Models

P(Wi |Wi—n+1l) Wi—l)

T Softmax

000000 -

Q00000

i

000000 -

Q00000

i

000000 -

000000

1L

(000
(000

Wi_n+1 Wi_n+2

1

(OO0}

(000

Wi_» Wi_1

Training corpus

* |like apples
 |love oranges
Test set

* |love apples
* |like oranges

12

Auto-Regressive Language Models

P(wy, Wy, ws, ...,w;) = P(wy)P(w,, ws, ..., w;|wy)

= P(W1) P(wy|lwq)(ws, ..., wi|wy, W)

= P(W1) P(Wz|w1) P (W3 |wy, wp)(Wy, .., wi|wy, Wy, ws)

l
— HP(WilwliWZI ""Wi—l)
=1

P(She likes to go hiking) = P(She) - P(likes|She) - P(to|She likes)
- P(go|She likes to) - P(hiking|She likes to go)

13

Recap: A General Framework for Text Classification

Textx —

_

Feature
(Representation)

J

- Teach the model how to make prediction vy

Classifier
(Model)

—> Label y

- Logistic regression, neural networks, CNN, RNN, LSTM, Transformers

14

Recap: Logistic Regression

- Logistic Regression for multiclass classification

Feature Vector X = [xq, X, X3, ..., Xg] Labely=0,1,..,C—1

Learnable
Parameters

Weight Vectors W, = [W¢ 1, We 2, We 3, oon, We] Bias b,

\ /

Z, =W, X+ b,

P(y = c| x) = softmax(z,)

eZc

Zt e’t

Softmax Function

softmax(z,) Prediction = arg max P(y =c| x)

15

Recap: Neural Networks

Prediction = arg maxy,
C

N K/
/)

AOREX, = 2
Q '§ @)

e
A

)

Multiclass Cross Entropy Loss

C
Les,9) ==) yelogP(y = cI %)
c=0

A Simple Approach: Averaged Embeddings + DNN

Alice treats Bob well
DTmensTonz 0.7 2.7 -0.1 -5. 0. @Vgg%v
imension 8.6 3.9 6.7 9.8 0.4 ' ' g““ @ 4"& ‘,‘
Dimension 3| | -2.4 -5.6 1.5 -1.6 -1.6 ;z§ @4“&“}“ @4“
Dimension 4 2.3 1.1 2.0 -1.0 1.1 w@‘\w/’

C
Leg(,Y) = —Zyc log P(y = c| %)
Any problems? =0

A Simple Approach: Concatenated Embeddings + DNN

0.7
Alice treats Bob well 85
-2.4
Dimension 1 0.7 2.7 -0.1 -5.7 '
2.3 ‘ 4 V1
Dimension 2 8.6 -3.9 6.7 -9.8 2.7 }’(/Q\"{
A AV NPV
X XS <9 (3 V2
QY THVRY 2/ XN
Dimension 3 -2.4 -5.6 1.5 -1.6 e “ @4“ "‘
5.6 \w/'\\@/)‘\w» e
Dimension 4 2.3 1.1 2.0 -1.0 '
1.1
C
Leg,Y) =—) YelogP(y = c| x)
Any problems? > - ;
-9.8
-1.6
-1.0

Challenges

- Averaged Embeddings
« Lose order information
- Concatenated Embeddings

- Cannot handle various lengths

19

Solution: Capture Local Order Information

Bob likes Alice very much

Unigram {Bob, likes, Alice, very, much}

Bigram {Bob likes, likes Alice, Alice very, very much}
Trigram {Bob likes Alice, likes Alice very, Alice very much}
4-gram {Bob likes Alice very, likes Alice very much}

We can infer global order information from local order information

20

Convolutional Neural Network (CNN)

- Capture local features (N-grams)
. Filters (Kernels)

- Hierarchical feature learning
- Multiple layers

21

Convolutional Neural Network (CNN)

Wi1 Wi2 W13

Learnable Weight (Filter)

Filter Size = 3 W=
Wa1 Wy2 Wy3
Alice treats Bob well
Dimension 1f | 0.7 2.7 -0.1 -5.7 V14
w11*0.7 + wy,*2.7+ wy3*-0.1 +
Dimension 2 8.6 -3.9 6.7 -9.8 V12
Wy 1*8.6 + Wyo*-3.9+ Wy3*6.7 +
Dimension 3 2.4 -5.6 1.5 -1.6 V1,3
W3 1*-2.4+ w3,*-5.6+ w33*1.5 i
Dimension 4 2.3 1.1 2.0 -1.0 V1,4

W4,1*2.3 + W4’2*1.1 + W4’3*2.O

Convolutional Neural Network (CNN)

Learnable Weight (Filter) Wi1 Wiz
Filter Size = 3 W=
Wa1 Wyp
Alice treats Bob well
0.7 2.7 -0.1 -5.7

Dimension 1

Dimension 2

Dimension 3

Dimension 4

W1’1*2.7 + Wl’z*—o.1+ W1,3*—5.7

8.6 -3.9 6.7 -9.8
Wp1*-3.9+ Wy,%6.7+ wy3*-9.8

2.4 -5.6 1.5 -1.6
W3 1*-5.6+ w3,*1.5+ w33*-1.6

2.3 1.1 2.0 -1.0

W4’1*1.1 + W4’2*2.0 + W4_‘3*'1.O

W13

Wa,3

V11 V1
+ +
V1,2 V32
+ +
V1,3 V33
+ +
V1,4 V24
U1 Uy

23

Convolutional Neural Network (CNN)

Dimension 1

Dimension 2

Dimension 3

Dimension 4

Learnable Weight (Filter) Wi1 Wiz Wis
Filter Size = 3 W=
Wa1 Wap Wa3
Alice treats Bob well o) Bob thinks
0.7 2.7 -0.1 -5.7 V11 V31 V31 Vg1 Us,1
+ + + + +
8.6 -3.9 6.7 -9.8 7.71’2 7.72’2 173,2 7.74_’2 v5,2
+ + + + +
-2.4 -5.6 1.5 -1.6 U1'3 U2’3 173}3 174_'3 U5’3
+ + + + +
2.3 1.1 2.0 -1.0 v1’4 v2’4 v3’4 v4’4 Us 4
Max Pooling
V1 1%} V3 Uy 4
v

24

Convolutional Neural Network (CNN)

Learnable Weight (Filter) Wi1 Wiz W3 Wii Wiz Wig3 Wi1 Wiz Wig3
Cilter Size = 3 w=1| .. w=]| - wl w=1 ..

Wa1 Wap Wa3 Wa1 Wap Was Wa1 Wap Wys

Alice treats Bob well
Dimension 1 0.7 2.7 -0.1 -5.7
Dimension 2 8.6 -39 6.7 -9.8
Dimension 3 -2.4 -5.6 1.5 -1.6
Dimension 4 2.3 1.1 2.0 -1.0

25

Convolutional Neural Network (CNN)

Filter Size=3 W =

Dimension 1

Dimension 2

Dimension 3

Dimension 4

Filter Size=2 W = [

W11 W12 W13
[Wa1 Wiz Wy3]
Alice treats Bob well
0.7 2.7 -0.1 -5.7
W1'1*0.7 + W1'2*2.7
8.6 -3.9 6.7 -9.8

W11

Wy 1

W12

Wy 2

T] Filter Size=4 W = [

W2’1*8.6 + W2'2*-3.9 + W2’3*6.7 + W2,4*-9.8

-2.4

-5.6

1.5

-1.6

2.3

1.1

2.0

-1.0

W11

Wy 1

26

Convolutional Neural Network (CNN)

Dimension

Dimension

Dimension

Dimension

Alice treats Bob well
0.7 2.7 -0.1 -5.7
8.6 -3.9 6.7 -9.8
-2.4 -5.6 1.5 -1.6
2.3 1.1 2.0 -1.0

C
Lee(,9) = —Eyclog P(y = c| x)
c=0

From Single Layer to Multiple Layers

Learnable Weight (Layer 1) W11 Wiz Wig3 Learnable Weight (Layer 2) Wiir Wiz Wis

Filter Size =3 W= Filter Size = 3 W=| -
(Wa1 Wao Wa3 Wa1 Wap W3

Alice treats Bob well Jo) Bob thinks

Dimension 1| | 0.7 2.7 -0.1 -5.7 V14 Vs 4 Va1 Va1 V11 Vs 1
Dimension 2 8.6 -3.9 6.7 -9.8 V12 (%) U3’2 Va2 V12 V22
Dimension 3 -2.4 -5.6 1.5 -1.6 V1,3 V2,3 V3,3 V43 V13 Y23
Dimension 4 2.3 1.1 2.0 -1.0 V14 V3 4 V34 Vg4 V1,4 V2,4

Capture high-order or hierarchical information

Convolutional Neural Network (CNN)

Capture local features (N-grams)

. Filters (Kernels)

Hierarchical feature learning
- Multiple layers

The whole process is still not similar to how human read texts

Can we model reading texts in a sequential way?

29

Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory

- Read = update memory

-

Memory

Update

the cats are cute

Read

30

Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory

- Read = update memory

e ~
Memory
" y
Update
All the| cats are cute

Read

31

Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory
- Read = update memory

4)

Memory

Update

All the are cute

Read

Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory

- Read = update memory

All

the

-

Memory

Update

cats

are

Read

cute

33

Recurrent Neural Network (RNN)

- Read texts sequentially like a human with memory
- Read = update memory

()

Memory

Update

All the cats are

Read

> Understanding

34

Recurrent Neural Network (RNN)

« Recurrent unit Update W, b

Learnable parameters
Hidden state ht Memory P

()

0y W, b

U

QOO+ 000)

35

Recurrent Neural Network (RNN)

Hidden States

N

hy =c(Whi_y +Ux, + b)

T

Activation Function
(tanh, sigmoid)

Read

/

Update

36

Recurrent Neural Network (RNN)

ht — O-(Wht_l + Uxt + b)

he[O] 1 [O] 12 [O] 13 (O] ha[O] hs[O
O—O—O—0—0—1O
S A s i
x1 | O x26 x3 | O x46 X5 8 C
O @) O O Leg(y,5) = — -logP(y = c| x
Q Q Q Q Q Y, y) ;y gP(y)
All the cats are cute

37

Recurrent Neural Network (RNN)

- Advantages

- Can process any length input

- Model size doesn’t increase for longer input context

- Computation for step t can (in theory) use information from many steps back
- Disadvantages

- Recurrent computation is slow

 In practice, difficult to access information from many steps back

- Vanishing gradient

38

Back-Propagation

oL
0y
oL 9y
dh® ~ 95 oh®
0L oL .ah(l) oL 9L on®
WD gh®M gwd® dh® ~ 9h® Jh®

oL 9L ohW oL 9L oh®
ob® ~ ah® 9b® FhD ~ gh®@ gh®

Vanishing Gradient Problem

hy = c(Why + Ux, + b) h" i ot Tl Bl il < O
@) @) O O O
h3 = U(th + UXS + b) T T T T T
x16 x26 x36 X4 O X5 O
hy = c(Whs + Ux, + b) o |0 |o| |0 |0
o © © © Y
hs = J(Wh4 + Uxsz + b) Al the cats are cute
0L oL ah5 0L ah5 dh, N 0L |0hg 0Oh,| Oh,
ow 6h5 aW ah5 ah4 oW 0dhg |0h, Ohs| OW
L L |ohs Ohy Ohs| Oh, 3L |dhs Ohy Ohy Ohy| oM,
dhs |0h, Oh, 0h,| OW @ Ohs |0h, 0h, Oh, Oh,| OW

When these are small, the gradient signal gets smaller and smaller as it back-propagates further

Model weights are updated only with respect to short-term effect rather than long-term effect

40

Long Short-Term Memory (LSTM)

- Short-term memory: hidden state h;

- Long-term memory: cell state ¢;

- Keyidea
- Turn multiplication into addition (partially reduce gradient vanishing)
. use gates to control how much information to add/erase

41

Recurrent Neural Network (RNN)

A
~ T\f N
—> (>
A L5
\, J AN

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

&) &

hy =c(Wh,_{ + Ux; + b)

42

Long Short-Term Memory (LSTM)

| | |

4) a4) (I
—»>— @ > —»>

Canh>
A 1ot A
I

—> > m

_ 4 J o\ J

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

43

Long Short-Term Memory (LSTM)

The cell state stores long-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

44

Long Short-Term Memory (LSTM)

1

Ganh
Oy 9

The hidden state stores short-term information

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

45

Long Short-Term Memory (LSTM)

Ci_1 Ct

The cell state stores long-term information

Whenever reading a word, we will write/forget information to the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

46

Long Short-Term Memory (LSTM)

it <
Cy
hi—1

Sigmoid function: gate
values are between O and 1 2,
Input gate [p = O'(W(i)ht_l +UWx, + b(i))

New information €, = tanh(W(C)ht_l +UOx, + b(C))

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

How much we should write

What we should write

47

Long Short-Term Memory (LSTM)

ft
ht—1
Sigmoid function: gate .
values are between 0 and 1
Forget gate ft = O'(W(f)ht_l +UWDx, + b(f))

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

How much we should erase

48

Long Short-Term Memory (LSTM)

Update cell state

/

Co =fe*Ceq + 1t

How much we should erase

/ What we should write
* C,

>

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

How much we should write

49

Long Short-Term Memory (LSTM)

he 1 hy

I

0; = O'(W(O)ht_l +U@x, + b(o))
Update hidden state
h; = o; * tanh(C;)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

50

Long Short-Term Memory (LSTM)

Uninterrupted gradient flow

- T\ ~ (/\\ A\ - T\
< —»—® @ > —p
A Ier Al A
S J_>Cf S J > \,)+

| | |
&) ®) &

The addition is the key

LSTM does not guarantee that there is no vanishing gradient
but it does provide an easier way to learn long-distance dependencies

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

51

RNN vs. LSTM

A
é A
— r >
RNN =
Y,

®

ht — O-(Wht_l + Uxt + b)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

O,

oo,
[STM *%ﬁﬁﬂaj.
&

e = (W Ok + UOx, + bO)
fo=o(WDh_y + UDx, + bD)
0 = (WO he_y + U@x, + b(®)

C, = tanh(W(C)h,:_1 4+ UOyx, + b(C))
Co = fr * Coq + iy * G
h; = o, * tanh(C;)

52

Gated Recurrent Units (GRU)

« Simplify 3 gates to 2 gates
- Reset gate and update gate
- No explicit cell state

- More training-efficient

53

Gated Recurrent Units (GRU)

Reset gate

Update gate

New hidden state

Ty = O'(W(T)ht_l + UMx, + b(’"))

Z; = tanh(W(z)ht_l + U@ x, + b(z))

h, = tanh(W(r; * hy_;) + Ux, + b)

he =1 —2z) *he_q + 2% hy

~._

Merge input and forget gate

54

Multi-Layer RNN (Stacked RNN)

|

EOQTEQQLQQQ

@%OIM%QIWQQ
@%OT@%QT@@Q
@%OIM%QIWQQ
@%@T@%@T@@Q
i

the cats are cute

All

55

Bidirectional RNN

000
000y <

TQQ =+ {000
OO0, =
888)*]1os
Q00N =
838)-"Jwos
Q00N =
838} wos
Q00K =
888}~ —os
ghl
000

the cats are cute

All

56

RNN is Flexible

- Can be used for both classification and generation
- Encoder
- Decoder
- Encoder-decoder

57

RNN as Sentence-Level Encoder

ho (O] 1 [O] ha|O] Bs[O)] ha
O—O—O—O—

YTy
x16 x; |O x36 X4

O O O

o 9 ©

All the cats

(OO0} 00O0)]

are

hs | O O
O— 0O
o e

x5 |O
O
©

cute

Sentence
Embedding

58

RNN as Token-Level Encoder

Token Embeddings

AR U IS IR N
ho (O hi|Of ha|O] hy | O] ha|O| hs|O
OO O—0—{0O—{O
RS A A
x1 | O] %20 x3|0O] x4|O x56

O O O O O

o 9 © © ©

All the cats are cute

The embeddings are contextualized

59

Part-of-Speech (POS) Tagging

You can | close | the door

PRP MD | VB DT NN

It is | close| to the door

PRP VBZ| J] IN DT NN

It’s a structed prediction problem

60

POS Tagging with Word Embeddings

PRP

[OO?D]—»

You

MD

(O0O0)]

Can

(OO0 &

close

(O0O0)]

the

(OO0}~ Z

door

PRP

= (000)—

VBZ

» (00O}

Q00—+ =

close

61

POS Tagging with Sequential Labeling

NN

DT

IN

door

~—000H000)

|

— 000000 £

TﬁO@OTﬁQQOQ

to

J]

AIHO@OIOOOQ

close

VBZ

PRP

NN

DT

IS

TﬁO@OTﬁOOOQ

~— 000000 =

|

~—{000+00O0|

|

000000 £

door

VB

TﬁO@OIOOOQ

close

MD

PRP

~— 000000

|

~—000000]

|

Can

You

62

Named Entity Recognition

John went to New York City to visit Kuan-Hao Huang
Entity Entity Entity

BIO Sequence

John went to New York City to visit Kuan-Hao Huang

B-Entity Other Other B-Entity |-Entity |-Entity Other Other B-Entity [-Entity

B-Entity: Begin of an entity span, |-Entity: Inside of an entity span

It’s a structed prediction problem

63

Named Entity Recognition as Sequential Labeling

B-Ent O O B-Ent |-Ent I-Ent O O B-Ent I-Ent
R N N
O O O O O O O O O O
—~ OO0~ OO~ OO~ OO0
Sl s A s G s s
ol [0l lo] [o] (o] [o] (o] (o |0 [O
O O O O @, O O O O O
o © 9 © © 9O 9O © © ©
John went to New York City to visit Kuan-Hao Huang

64

Sequential Labeling

- A sequence of dependent classification

(1) (2) (3) (4) (5)
Leg Lee Lok Leg L

R A

>>

h

S

Q00|

(OO0} 0O 0O

(OO0} 00O0)]
(OO0 0OO
(OO0 00O
(OO0 O0O0O

(@)
(-
—t
M

the cats are

>

_ZEL'

RNN as Decoder (Generator)

- RNN Language Modeling

- Generation is a sequence of word classification

P(wy,wy, ws, ...,w;) = P(w)P(Wy, Wy, ..., w;|wy)

P(w;|Wi_nt1) s Wi—1) — P(Wl)P(WZ |W1)(W3; LR’ Wl |W11 WZ)

I Softmax

(000000 - 000000 — P(Wl)P(Wzlwl)P(W3|W1,Wz)(W4, ey

t
OOOOOO-"OOOOOO

OOOOOO-"OOOOOO

l
i i i i — HP(Wilwl'WZJ '"JWi—l)
=1

Neural Ianguage models
with context window

wy|wy, wy, W3)

66

RNN as Decoder (Generator)

- RNN Language Modeling

- Generation is a sequence of word classification

the cats are cute <eos>

[O?OJ

(OO0} 00O)]

<bos> All the cats are cute
67

RNN as Decoder (Generator)

- RNN Language Modeling

- Generation is a sequence of word classification
(1) (2) (3) (4) (5) (6)
LCE LCE LCE LCE [’CE LCE

E N N

— > — — —

hy

—l

(0O00)]

(OO0 OO0
(OO0 00O0
(OO0 00O
(OO0 00O0
(O00H000
(OO0 +HO0O

<bos> All the cats are cute

[=

N

Y

=1

(1)
CE

68

Encoder vs. Decoder

- Encoder
- Focus more on representations and understanding
- Decoder

« Focus on generation

69

70

000000

|

000000

|

Encoder

Encoder

PRP

VBZ

IS

J]

close

to

DT

the

NN

door

71

Decoder

|
000

All

Q00

<bos>

cats

000

OO0

the

are

CO0—~000

cats

cute

OO0~ 00Q

are

<e0s>

T

OO 00O0)

cute

72

Sequence-to-Sequence Models (Seg2Seq)

- When we need understanding and generation at the same time

Decoder
Encoder
[| A A AN A A
ho|O| hi|Of h|O] hz3|O hy O hs| OV b1 |Of s2|Of s3|O] 84| O] 85O 86O
O——O—1 00— O0O—O—O0Hrt1O0O—O0—O—O—O——~O
S A s s A I A A A A i
%, [0] % (0] (0] x[0| x[0||h (0] v.[0] »:[0O] »|0]| ¥s[0] v[O
O O O O O O O O O O O
S © © © Y© © © © 9 ©

Sequence-to-Sequence Tasks

English - detected Plend French «

hello world X Bonjour le monde

s o 0

| think | have an idea that should sort of
improve campaign performance.

Provided proper attribution is provided, Google hereby grants permission to
reproduce the tables and figures in this paper solely for use in journalistic or

scholarly works.

&
»

Summary

The document titled "Attention Is All You Need" introduces the Transformer model, a network
architecture based solely on attention mechanisms, eliminating the need for recurrent or
convolutional neural networks in sequence transduction tasks. The Transformer model
achieves superior performance in machine translation tasks, demonstrating improved quality,

parallelizability, and reduced training time compared to existing models. The key points and

Attention Is All You Need
Ashish Vaswani® Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
com com ni e.com .com
Llion Jones* Aidan N. Gomez" © Lukasz Kaiser”
Google Research University of Toronto Google Brain
11ion@google. com aidan@cs. toronto.edu lukaszkaiser@google.com
Tllia Polosukhin® *

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions

-
@ Tone Suggestion
Confident _
| have an idea that should improve campaign
performance.
Rephrase Dismiss
|

~ entirely. Experiments on two machine translation tasks show these models to

be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model f-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

“Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our rescarch.

TW0nsbe machmrmnad swbils 2t Fincata Bosin

https://www.txyz.ai/
https://www.grammarly.com/grammar-check
https://translate.google.com/

arguments presented in the document are as follows:

The dominant sequence transduction models rely on complex recurrent or
convolutional neural networks with an encoder-decoder structure and attention

mechanisms.

The Transformer model proposes a new architecture based solely on attention

mechanisms, eliminating the need for recurrence and convolutions.

Experiments show that the Transformer model outperforms existing models in machine

translation tasks, achieving state-of-the-art results with reduced training time.

The model utilizes self-attention to compute representations of input and output

sequences, allowing for more parallelization and global dependencies.

The Transformer model consists of stacked self-attention and fully connected layers for

both the encoder and decoder, enabling efficient sequence transduction.

Multi-Head Attention is employed to jointly attend to information from different

representation subspaces at different positions, enhancing the model's performance.

Key Points:

« Transformer model introduces a network architecture based solely on attention

74

Translation

 Translate English to Chinese Classification over the whole vocabulary

(000)]

V1

(000}—+{000]
(000}+000]
(OO0 }+{000)
(OO0 OO0} —+

- (000}+000]
» [000}+{000)

like cats lot <bos> Begin-of-Sentence Token

75

Translation

End-of-Sentence Token

- Translate English to Chinese

<eos>

— 000000 &
E S
%LO%QIQQQ =
5 S
@i@%@IO@Q i1
5 S
50 LOWQIQQQ e
& =
@LO%@IQQQ
& N
ﬁi@%@I@QQ
& =
6%@1@@9
h; £
EQOIMQQ ©
ﬁOWOIWOQ

= =

H

<bos>

lot

cats

like

6%@1@@9
6@@1@@2 -

= =

ﬁ@@w

=

76

Sequence-to-Sequence Model Loss

1 N
_ (i)
L‘NELCE
=1

([O0O0)]

(OO0 +00O)]

- (00000 0)

like

(OO0 00O)]

cats

(OO0 +O0O0O0]

» ([O00H000]

lot

(3)
‘LCE

o

B9 R
11
s11O| s2|O
— OO
T T
y1 O ¥2|O
O O

o ©
<bos> F

V3

@
‘ECE

W
NN

|

=

(5)
‘LCE
S

T

%5
ul

|

= 000~ 000)—

(6)
‘£CE

<eos>

|

=2
Ul

m (OO0 O0O0O}— =

Ve

(000000

% (000F+000)

77

Decoder-Only Models vs. Seq2Seq Models

- Decoder-only models with prompting
« Continue writing
- Seg2Seq models
- Encode first, then generate
- The difference becomes larger when we talk about Transformers!

78

Seq2Seq: Bottleneck

- Asingle vector needs to capture all the information about source sentence
- Longer sequences can still lead to vanishing gradients

85 a5 = K M <eos>
Sy N 0 ER AR S ER
ho (O h|O]| ha|O] hy|Of hy | O hs | O] sh | O] 52|O| s3(O| $4|O| s5(O| s6|O
o (o 9 o 9 1o [lof 9 1o o 9 [o
r r r fr+=Jr T 1 1T 1 T
x| O] %2 |O| 2|0 x|O] x5|O| ¥1|O| ¥2|O| ¥3|O| y4|O| y5|O| ¥6|O
O O O O O O O O O O O
o 1o 19 19 9 1o 9 & o 19 o
I like cats a lot <bos> K 1R = W S

79

Focus on A Particular Part When Decoding

- Each token classification requires different part of information from source

<e0s>

sentence

E5% 1R s R S

N
ho (O] hi|Of ha|O] hz|O| ha|O| hs|O] s1|O| s2 1O s3]0 82| O| 55O Se
OF—O—OF—{O—OF—+O—+OF—+O—+O—~ OO

o 0] © |9 9 © o |©o © |9 |

T+ 1+t 1 1 1T 1T T
x1|O] %2|O| x3|O| % |O] x5 |O| »1|O| ¥2|O| ¥3|O| ¥a|O| y5|O| ¥e

O O O O O O O O O O

o 1o o) 1o 1o o o o o |o

I like cats a lot <bos> K 1R = W

% (000000

80

Next: Attention

- Attention provides a solution to the bottleneck problem

- Key idea: At each time step during decoding, focus on a particular part of
source sentence

81

	Slide 0: CSCE 689: Special Topics in Trustworthy NLP
	Slide 1: LaTeX Assignment
	Slide 2: Topic Sign-Up
	Slide 3: Recap: Language Models
	Slide 4: Recap: Auto-Regressive Language Models
	Slide 5: Recap: N-Gram Language Models
	Slide 6: Recap: What Can Language Models Do?
	Slide 7: N-Gram Language Models
	Slide 8: Unseen Patterns in Training Corpus
	Slide 9: Laplace Smoothing
	Slide 10: Linear Interpolation
	Slide 11: N-Gram Language Models
	Slide 12: Neural Language Models
	Slide 13: Auto-Regressive Language Models
	Slide 14: Recap: A General Framework for Text Classification
	Slide 15: Recap: Logistic Regression
	Slide 16: Recap: Neural Networks
	Slide 17: A Simple Approach: Averaged Embeddings + DNN
	Slide 18: A Simple Approach: Concatenated Embeddings + DNN
	Slide 19: Challenges
	Slide 20: Solution: Capture Local Order Information
	Slide 21: Convolutional Neural Network (CNN)
	Slide 22: Convolutional Neural Network (CNN)
	Slide 23: Convolutional Neural Network (CNN)
	Slide 24: Convolutional Neural Network (CNN)
	Slide 25: Convolutional Neural Network (CNN)
	Slide 26: Convolutional Neural Network (CNN)
	Slide 27: Convolutional Neural Network (CNN)
	Slide 28: From Single Layer to Multiple Layers
	Slide 29: Convolutional Neural Network (CNN)
	Slide 30: Recurrent Neural Network (RNN)
	Slide 31: Recurrent Neural Network (RNN)
	Slide 32: Recurrent Neural Network (RNN)
	Slide 33: Recurrent Neural Network (RNN)
	Slide 34: Recurrent Neural Network (RNN)
	Slide 35: Recurrent Neural Network (RNN)
	Slide 36: Recurrent Neural Network (RNN)
	Slide 37: Recurrent Neural Network (RNN)
	Slide 38: Recurrent Neural Network (RNN)
	Slide 39: Back-Propagation
	Slide 40: Vanishing Gradient Problem
	Slide 41: Long Short-Term Memory (LSTM)
	Slide 42: Recurrent Neural Network (RNN)
	Slide 43: Long Short-Term Memory (LSTM)
	Slide 44: Long Short-Term Memory (LSTM)
	Slide 45: Long Short-Term Memory (LSTM)
	Slide 46: Long Short-Term Memory (LSTM)
	Slide 47: Long Short-Term Memory (LSTM)
	Slide 48: Long Short-Term Memory (LSTM)
	Slide 49: Long Short-Term Memory (LSTM)
	Slide 50: Long Short-Term Memory (LSTM)
	Slide 51: Long Short-Term Memory (LSTM)
	Slide 52: RNN vs. LSTM
	Slide 53: Gated Recurrent Units (GRU)
	Slide 54: Gated Recurrent Units (GRU)
	Slide 55: Multi-Layer RNN (Stacked RNN)
	Slide 56: Bidirectional RNN
	Slide 57: RNN is Flexible
	Slide 58: RNN as Sentence-Level Encoder
	Slide 59: RNN as Token-Level Encoder
	Slide 60: Part-of-Speech (POS) Tagging
	Slide 61: POS Tagging with Word Embeddings
	Slide 62: POS Tagging with Sequential Labeling
	Slide 63: Named Entity Recognition
	Slide 64: Named Entity Recognition as Sequential Labeling
	Slide 65: Sequential Labeling
	Slide 66: RNN as Decoder (Generator)
	Slide 67: RNN as Decoder (Generator)
	Slide 68: RNN as Decoder (Generator)
	Slide 69: Encoder vs. Decoder
	Slide 70: Encoder
	Slide 71: Encoder
	Slide 72: Decoder
	Slide 73: Sequence-to-Sequence Models (Seq2Seq)
	Slide 74: Sequence-to-Sequence Tasks
	Slide 75: Translation
	Slide 76: Translation
	Slide 77: Sequence-to-Sequence Model Loss
	Slide 78: Decoder-Only Models vs. Seq2Seq Models
	Slide 79: Seq2Seq: Bottleneck
	Slide 80: Focus on A Particular Part When Decoding
	Slide 81: Next: Attention

