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LaTeX Assignment

• LaTeX Assignment (1%)

• Due: Sep 11, 11:59pm
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Course Schedule Change
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Topic Sign-Up

• Sign-up: https://tinyurl.com/2p9mr2wa

• Log in with TAMU account

• Due: Sep 10 before lecture
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https://tinyurl.com/2p9mr2wa


Topic Study

• Topic Study (30%)

• Literature Review (15%) [Due: 10/2]

• Examples

• Survey of Prompting Methods

• Survey of Mitigating Gender Bias

• Survey of AI Alignment

• Topic Presentation (15%)

• Email your slides to the instructor at least 2 days before your presentation
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https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/1906.08976
https://arxiv.org/abs/1906.08976
https://arxiv.org/abs/2310.19852
https://arxiv.org/abs/2310.19852


• A single vector needs to capture all the information about source sentence

• Longer sequences can still lead to vanishing gradients

Seq2Seq: Bottleneck
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Focus on A Particular Part When Decoding
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• Each token classification requires different part of information from source 
sentence 
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RNN with Attention
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Different Types of Attention
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Dot-Product Attention ℎ𝑖
⊤𝑠𝑗

Multiplicative Attention

Additive Attention

ℎ𝑖
⊤𝑊𝑠𝑗

𝑣⊤ tanh 𝑊1ℎ𝑖 +𝑊2𝑠𝑗



Machine Translation with Attention
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Speech Recognition with Attention
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Listen, Attend and Spell, 2015



Image Captioning with Attention
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Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015



Issues with RNN

• Longer sequences can lead to vanishing gradients → It is hard to capture 
long-distance information

• Lack parallelizability
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Transformers: Attention Is All You Need!
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Attention Is All You Need, 2017
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Attention – General Version
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From Attention to Self-Attention

• Self-attention = attention from the sequence to itself

• The queries, keys and values come from the same source

• Any word can be a query

• Any word can be a key

• Any word can be a value

24



Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention – Matrix Form
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http://jalammar.github.io/illustrated-transformer/

Word 1
Word 2

Word 1
Word 2

Word 1
Word 2

Attention 𝑄,𝐾, 𝑉 = softmax
𝑄𝐾⊤

𝑑𝑘
𝑉



Single-Head Attention
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Multi-Head Attention
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Each attention head focuses on different parts of understanding!



Multi-Head Attention – Matrix Form

36
http://jalammar.github.io/illustrated-transformer/

head𝑖 = Attention 𝑋𝑊𝑖
𝑄 , 𝑋𝑊𝑖

𝐾 , 𝑋𝑊𝑖
𝑉

Attention 𝑄,𝐾, 𝑉 = softmax
𝑄𝐾⊤

𝑑𝑘
𝑉

MultiHead 𝑄,𝐾, 𝑉 = Concat head1, … , headℎ 𝑊𝑂



What Does Multi-Head Attention Learn?
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http://jalammar.github.io/illustrated-transformer/



Transformer Layer
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LayerNorm(𝑥 + Sublayer(𝑥))

Residual connection (He et al., 2016)
Layer normalization (Ba et al., 2016)



Transformer Encoder
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…



How About Word Order?
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How About Word Order?
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How About Word Order?
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Solution: Positional Encoding
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𝑥𝑖 ← 𝑥𝑖 + 𝑃𝐸𝑖

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

+ + + + +



Solution: Positional Encoding
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𝑥𝑖 ← 𝑥𝑖 + 𝑃𝐸𝑖

𝑥1 𝑥3 𝑥2 𝑥4 𝑥5

I cats like a lot

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

+ + + + +



Solution: Positional Encoding

• Unique encoding for each position

• Closer positions should have more similar encodings

• Distance between neighboring positions should be the same

45



Sinusoidal Positional Encoding 

46

Why this?



Sinusoidal Positional Encoding: Intuition 

47

𝑃𝐸(0)

𝑃𝐸(1)𝑃𝐸(2)

𝑃𝐸(3)

𝑃𝐸(4)

https://www.inchcalculator.com/unit-circle-calculator/



Sinusoidal Positional Encoding: Intuition 

48

𝑃𝐸(0)

𝑃𝐸(1)

𝑃𝐸(3)

𝐶𝑜𝑠𝑖𝑛𝑒 𝑃𝐸 0 , 𝑃𝐸 1 > 𝐶𝑜𝑠𝑖𝑛𝑒(𝑃𝐸 0 , 𝑃𝐸(3))

Closer positions should have more similar encodings

https://www.inchcalculator.com/unit-circle-calculator/



Sinusoidal Positional Encoding: Intuition 

49

𝑃𝐸(0)

𝑃𝐸(1)

𝑃𝐸(3)

𝑃𝐸(4)

𝐶𝑜𝑠𝑖𝑛𝑒 𝑃𝐸 0 , 𝑃𝐸 1 = 𝐶𝑜𝑠𝑖𝑛𝑒(𝑃𝐸 3 , 𝑃𝐸(4))

Distance between neighboring positions should be the same

https://www.inchcalculator.com/unit-circle-calculator/



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 

50
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



• How to expand to high-dimension?

• Let’s consider binary positional encoding first
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Sinusoidal Positional Encoding: Intuition 
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https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 

52
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

High frequency rotation

Low frequency rotation



• How to expand to high-dimension?

• Let’s consider binary positional encoding first

• How to use 4 bits to represent position 0~15?

Sinusoidal Positional Encoding: Intuition 
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https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Soft version of alternating bits



Sinusoidal Positional Encoding
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https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Sinusoidal Positional Encoding

55
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Positional Encoding
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

I like … like …

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

+ + + + +

𝐸 I + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 2 = 𝐸 I 𝐸 like + 𝐸 I 𝑃𝐸 2 + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 1 𝑃𝐸(2)

𝐸 I + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 4 = 𝐸 I 𝐸 like + 𝐸 I 𝑃𝐸 4 + 𝑃𝐸 1 𝐸 like + 𝑃𝐸 1 𝑃𝐸(4)

In expectation, they are the same Position difference



Transformer Encoder with Positional Encoding

57



Transformer as Token-Level Encoder 
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Transformer as Sentence-Level Encoder 

59

𝑞𝑖 = 𝑊𝑗
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How to compute 

attention from the token 
we are going to generate?
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Transformer Encoder Transformer Decoder



Transformer Encoder vs. Transformer Decoder

• When computing attention for one word

• Encoder: can see the words before and after this word

• Decoder: can see the words only before this word
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Causal Masking



Masked Attention: Implementation
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Causal Masking Causal Attention ScoresAll-Pair Attention Scores

⊗ =

Normalize attention weights
& Weighted average value vectors
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