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Paper Summary

• A brief overview of the main objectives and contributions of the paper 

• Key methodologies and approaches used in the study 

• Significant findings and results 

• Strengths and weaknesses of the paper 
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Large Language Models
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Zero-Shot Prompting
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A New Way to Use NLP Models

• Task-specific features + task-specific model

• General embeddings + task-specific model

• General embeddings + general model + task-specific fine-tuning

• General embeddings + general model + task-specific prompting
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Prompt Engineering

• Craft inputs to guide LLMs models effectively

6
Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting, 2023



Zero-Shot Prompting
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Few-Shot Prompting / In-Context Learning

8
Language Models are Few-Shot Learners, 2020

In-context learning examples
Demonstration examples



Few-Shot Prompting / In-Context Learning
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http://ai.stanford.edu/blog/in-context-learning/



Few-Shot Prompting / In-Context Learning

10
Language Models are Few-Shot Learners, 2020



Chain-of-Thought (CoT) Prompting

• Ask the model to explain its reasoning before making an answer

11
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022



Chain-of-Thought (CoT) Prompting

• Ask the model to explain its reasoning before making an answer
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Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022



Zero-Shot Chain-of-Thought Prompting

13
Large Language Models are Zero-Shot Reasoners, 2022



Zero-Shot Chain-of-Thought Prompting
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Large Language Models are Zero-Shot Reasoners, 2022



Reasoning Models

15
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, 2025

https://platform.openai.com/docs/models/compare



LLaMA Series

• Creator:

• Goal: Strong and safe open language model

• Unique features: Open models with strong safeguards and chat tuning, 
good performance
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https://ai.meta.com/blog/meta-llama-3/

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
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Mistral/Mixtral

• Creator:

• Goal: Strong and somewhat multilingual open language model

• Unique features: Speed optimizations, including GQA and Mixture of 
Experts
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https://mistral.ai/en/news/mixtral-of-experts

https://mistral.ai/en/news/mixtral-of-experts
https://mistral.ai/en/news/mixtral-of-experts
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Qwen Series

• Creator:

• Goal: Strong multilingual (esp. English and Chinese) language model

• Unique features: Large vocabulary for multilingual support, strong 
performance
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https://qwen.ai/

https://qwen.ai/


DeepSeek Series

• Creator:

• Goal: Strongest open-weight language model so far

• Unique features: Relatively low-cost reinforcement-learning-based 
alignment for reasoning
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https://www.deepseek.com/

https://www.deepseek.com/


OLMo

• Creator:

• Goal: Better science of state-of-the-art LMs

• Unique features: fully open-source and fully documented model, 
instruction tuned etc.
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https://allenai.org/olmo

https://allenai.org/olmo


Proprietary LLMs
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https://openai.com/

https://gemini.google.com/

https://claude.ai/

GPT Series

Gemini Series

https://x.ai/

Claude Series

Grok Series

https://openai.com/
https://gemini.google.com/
https://claude.ai/
https://x.ai/


LM Arena
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https://lmarena.ai/

https://lmarena.ai/


Text Similarity
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Document Clustering

24
https://medium.com/@danielafrimi/text-clustering-using-nlp-techniques-c2e6b08b6e95



Information Retrieval
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Recommendation Systems
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Semantic Quality Control

• Paraphrase generation

• Style transfer

• Plagiarism detection
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We will go hiking if tomorrow is a sunny day.

If it is sunny tomorrow, we will go hiking.



Semantic Textual Similarity Benchmark
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A soccer player is kicking the soccer 
ball into the goal from a long way 

down the field.

A soccer player kicks the ball into 
the goal.

3.25

Earlier this month, RIM had said it 
expected to report second-quarter 

earnings of between 7 cents and 11 
cents a share.

Excluding legal fees and other 
charges it expected a loss of 

between 1 and 4 cents a share.

1.2

David Beckham Announces 
Retirement From Soccer.

David Beckham retires from 
football.

4.4

… … …

3.94

0.5

3.8

…



Pearson’s Correlation Coefficient

29
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php



Spearman’s Correlation Coefficient

• Pearson’s correlation coefficient on rank

• Score

• Human: [1.2, 3.4, 2.5, 0.7, 4.0]

• Machine: [0.5, 3.3, 1.0, 1.2, 3.4]

• Rank

• Human: [4, 2, 3, 5, 1]

• Machine: [5, 2, 4, 3, 1]

• Assesses monotonic relationships

• whether linear or not

30
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient



A Simple Approach: Text Encoder + Cosine Similarity

31

𝐸1 = Encoder(𝑆1)

𝐸2 = Encoder(𝑆2)

Similarity 𝑆1, 𝑆2 =
𝐸1 ⋅ 𝐸2
𝐸1 𝐸2

Unfortunately, the performance is bad (why?)



A Simple Approach: Text Encoder + Cosine Similarity

32

Pre-trained BERT embeddings are more 
about lexical information

Good classification performance ≠ Good similarity

We will go hiking if tomorrow is a sunny day.

If it is sunny tomorrow, we will go hiking.

Let’s go to hike once tomorrow is sunny.



Sentence-BERT

• Consider SNLI dataset

• Stanford Natural Language Inference
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A boy is jumping on skateboard in 
the middle of a red bridge.

The boy skates down the sidewalk. Contradiction

A boy is jumping on skateboard in 
the middle of a red bridge.

The boy is wearing safety equipment. Neutral

A boy is jumping on skateboard in 
the middle of a red bridge.

The boy does a skateboarding trick. Entailment



Sentence-BERT
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Contradiction Neutral Entailment

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks



Sentence-BERT
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Contradiction Neutral Entailment

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

Cross Entropy Loss

Triplet Loss



Sentence-BERT: Performance
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SimCSE

• Simple Contrastive Learning of Sentence Embeddings 
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Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Contrastive Learning
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Sentence 1A Sentence 1B

Sentence 2A Sentence 2B

Sentence 3A Sentence 3B

Sentence 4A Sentence 4B

Sentence 5A Sentence 5B

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss

If it is sunny tomorrow, we will go hiking. If [mask] is sunny tomorrow, we [mask] go hiking.

Generate positive example with masking



Dropout
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Generate positive example with neuron masking

Dropout: A Simple Way to Prevent Neural Networks from Overfitting



Unsupervised Contrastive Learning

45

Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1 Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 2

Sentence 1

Sentence 2’

Sentence 3

Sentence 4

Sentence 5

Contrastive Loss



Unsupervised Contrastive Learning
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Sentence 1’

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Contrastive LossSentence 2



SimCSE: Performance
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Dense Passage Retrieval

50

We will go hiking if tomorrow is a sunny day.

If it is sunny tomorrow, we will go hiking.

Similarity between two sentences

Similarity between query and documents

Dense Passage Retrieval for Open-Domain Question Answering



Retrieval-Augmented Generation (RAG)
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https://pureinsights.com/blog/2023/what-is-retrieval-augmented-generation-rag/



Retrieval-Augmented Generation (RAG)
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Question LLM Output

Question LLM Output
Retrieved

Documents



Retrieval-Augmented Generation (RAG)
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How to Train A Retriever?
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How to Train A Retriever?
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Retrieval-Augmented Generation (RAG)
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Why RAG?

• LLMs can’t memorize all (long-tail) knowledge in their parameters
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Why RAG?

• LLMs’ knowledge is easily outdated and hard to update
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Why RAG?

• LLMs’ output is challenging to interpret and verify

59



Why RAG?

• LLMs are shown to easily leak private training data
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Vision + Language

• Image captioning

61
https://github.com/danieljl/keras-image-captioning



Image Captioning with Encoder-Decoder Models

62
Encoder-Decoder Model

Replace the text encoder 
as an image encoder



Recap: Convolutional Neural Network (For Text)
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wellBobtreatsAlice
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Convolutional Neural Network (For Image)

64
https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture/



Encoder-Decoder: CNN-RNN

65
Show and Tell: A Neural Image Caption Generator

Text embedding space and image 
embedding space can be aligned!



CNN + Attention LSTM

66
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015



Joint Visual and Textual Embeddings: VisualBERT

67
VisualBERT: A Simple and Performant Baseline for Vision and Language

Require an object detection model



Joint Visual and Textual Embeddings: VisualBERT
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VisualBERT: A Simple and Performant Baseline for Vision and Language



Visual Question Answering

69
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering



Language Grounding

70
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models



Vision Transformer

71
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale



CLIP: Contrastive Language-Image Pre-Training

72
Learning Transferable Visual Models From Natural Language Supervision



Training with Image-Caption Pairs
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Training Details

74

Transformer

ResNet
Vision Transformer

1 0 0 … 0

0 1 0 … 0

0 0 1 … 0

… … … … 0

0 0 0 0 1



Zero-Shot Prediction
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Zero-Shot CLIP vs. Few-shot Linear Probes
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Image Retrieval with Text Query

77



VideoCLIP

78
VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding
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