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Recap: CLIP: Contrastive Language-Image Pre-Training

1
Learning Transferable Visual Models From Natural Language Supervision



GLIP: Grounded Language-Image Pre-training

2
Grounded Language-Image Pre-training



Object Detection and Text Grounding
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GLIP: Grounded Language-Image Pre-training

4



Grounding Results
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Zero-Shot Grounding
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Encoder-Only vs. Encoder-Decoder

• Encoder-only

• CLIP, GLIP, DesCo, etc.

• Better for image-text retrieval

• Encoder-decoder

• Better for generation
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BLIP: Bootstrapping Language-Image Pre-training

8
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation



A Unified Framework
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Contrastive Training
(Similar to CLIP)



A Unified Framework
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Fuse Modalities



A Unified Framework
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Zero-Shot Image-Text Retrieval
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Image Captioning
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Visual Question Answering

14

Visual Question Answering



BLIP-2: Frozen Image Encoders and Large Language Models
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BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models



Instructed Zero-Shot Image-to-Text Generation
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LLaVA: Visual Instruction Tuning
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https://llava-vl.github.io/



GPT-Assisted Visual Instruction Data Generation
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Stage 1: Pre-training for Feature Alignment
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Train with Image-Text Pairs



Stage 2: Fine-tuning End-to-End

20

Visual Chat (Visual Instruction Data) and Science QA



Examples
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LLaVA-OneVision
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https://llava-vl.github.io/blog/2024-08-05-llava-onevision/



LLaVA-OneVision

23
https://llava-vl.github.io/blog/2024-08-05-llava-onevision/



LLaVA-NeXT-Interleave
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LLaVA-NeXT-Interleave: Tackling Multi-image, Video, and 3D in Large Multimodal Models



Why Alignment?

• Language modeling ≠ assisting users
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Why Alignment?

• Language modeling ≠ assisting users
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Why Alignment?

• Continuing writing does not always work
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Instruction Tuning

• LLMs have knowledge, but don’t always generate the outputs we want

• Training LLMs to following human instructions
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Recap: T5
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Instruction Tuning

• Convert existing tasks to (input, output) format

• Create many prompts and collect human answers
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Sidenote: Why Decoder-Only Instead of Encoder-Decoder?
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Sidenote: Why Decoder-Only Instead of Encoder-Decoder?
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Scaling Up Instruction Tuning
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Instruction Tuning → Instruction Pre-Training

• Instruction fine-tuning for many tasks
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Instruction Tuning
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Instruction Tuning
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Limitations of Instruction Fine-Tuning

• It is expensive to collect ground-truth data for tasks

• Open-ended creative generation have no right answer

• E.g., write me a story about a dog and her pet grasshopper

• language modeling penalizes all token-level mistakes equally, but some 
errors are worse than others
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Even with instruction finetuning, there is still a 
mismatch between the LM objective and 

“satisfying human preferences”!



Alignment Pipeline
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Pre-Training
Supervised 
Fine-Tuning

Preference 
Optimization



Reinforcement Learning from Human Feedback (RLHF)
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Human Feedback

• Human reward
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Goal: maximize the expected reward of samples from our LM



Reinforcement Learning from Human Preferences
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How do we change the LM parameters 𝜃 to maximize this?



Reinforcement Learning
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Environment

Actor/Agent

State



Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Solutions
• Q-Learning
• Policy Gradient
• Actor-Critic
• …



Optimizing for Human Preferences
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Gradient Ascent

How do we change the LM parameters 𝜃 to maximize this?

Policy Gradient Methods in Reinforcement Learning
(REINFORCE) [Williams, 1992] 



Policy Gradient/REINFORCE
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Gradient Ascent

Log-Derivative Trick



Policy Gradient/REINFORCE
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We can approximate this objective with Monte Carlo samples



Policy Gradient/REINFORCE

50

We reinforce good actions, increasing the chance they happen again



Proximal Policy Optimization (PPO)

• New parameters 𝜃′ cannot be very different from old parameters 𝜃 
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𝐽𝑃𝑃𝑂
𝜃′ 𝜃 = 𝐽𝜃

′
𝜃 − 𝛽𝐾𝐿 𝜃, 𝜃′

Regularization



How to Model Human Preferences?

• Now for any reward function 𝑅, we can train our language model to 
maximize expected reward

• Problem 1: human-in-the-loop is expensive

• Solution: instead of directly asking humans for preferences, model their 
preferences as a separate (NLP) problem

• Train a reward model (RM) from an annotated dataset
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How to Model Human Preferences?

• Now for any reward function 𝑅, we can train our language model to 
maximize expected reward

• Problem 2: human judgments are noisy and miscalibrated

• Solution: instead of asking for direct ratings, ask for pairwise comparisons, 
which can be more reliable
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Training A Reward Model
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Reward Model vs. Real Human Feedback

55



RLHF: Putting Everything All Together
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RLHF: Putting Everything All Together
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RLHF vs. Supervised Fine-Tuning 
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Alignment Pipeline
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Pre-Training
Supervised 
Fine-Tuning

Preference 
Optimization

Instruction
Data

Preference
Data



InstructGPT
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ChatGPT: Instruction Fine-tuning + RLHF for Dialog Agents
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Direct Preference Optimization (DPO)
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Direct Preference Optimization: Your Language Model is Secretly a Reward Model, 2023



RLHF: Proximal Policy Optimization (PPO) 
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Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Maximize reward Keep similar behavior



Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)
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Direct Preference Optimization (DPO)
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DPO Performance

71



Large-Scale DPO Training
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Simple Preference Optimization (SimPO)
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SimPO: Simple Preference Optimization with a Reference-Free Reward, 2024



Look Back at DPO
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How does reference model affect the behavior?

𝑟 𝑥, 𝑦𝑤 > 𝑟 𝑥, 𝑦𝑙 ⇒ 𝑝𝜃 𝑦𝑤 𝑥 > 𝑝𝜃 𝑦𝑙 𝑥 ?



Solution: Reference-Free Reward
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𝑟 𝑥, 𝑦 =෍

𝑖=1

𝑦

log 𝜋𝜃 𝑦𝑖|𝑥, 𝑦<𝑖

Length bias! 
The model tends to generate longer 

sequence to maximize reward



Solution: Reference-Free Reward
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Reward margin



SimPO Performance
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Group Relative Policy Optimization (GRPO)
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Deepseek uses it!



Recap: Reward Model in PPO

• Train a reward model (RM) from an annotated dataset
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Group Relative Policy Optimization (GRPO)

• Consider group relative reward

• Given 𝑥, sample multiple output 𝑦1, 𝑦2, … , 𝑦𝐺
• Use reward model to get reward 𝑟1, 𝑟2, … , 𝑟𝐺
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𝐴𝑖 =
𝑟𝑖 −𝑚𝑒𝑎𝑛(𝑟1, 𝑟2, … , 𝑟𝐺)

𝑠𝑡𝑑(𝑟1, 𝑟2, … , 𝑟𝐺)
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