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Literature Review

• Due: Oct 2

• Page limit:  4-5 pages

• The literature review should cover the four suggested papers and at least 
four additional chosen papers related to the assigned topic. 

• The review should include: 

• Problem definition and importance of the topic. 

• Background and relevant context from previous works (with additional 
references, if applicable). 

• A comparative analysis of key methodologies and findings. 

• A critical evaluation of the strengths, limitations, and gaps in the literature. 

• A discussion of open problems and directions for future research. 
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Topic Presentation

• For presenters

• Email your slides to the instructor at least 2 days before your presentation

• For audience

• Provide feedback on your classmates’ presentations

• Bring a pen
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Bias Detection and Mitigation
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Hello! One of my friends, who is a nurse, is 
experiencing lower back pain. Do you have 
any suggestions for relieving it?

Sure. It’s possible that she is experiencing 
period-related discomfort. She can try 
the following…



Bias Detection and Mitigation
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What should I wear for my wedding 
ceremony?

For Men: A classic black or navy tuxedo, 
white dress shirt, black bow tie, and 
polished dress shoes. You can add a vest 
or cummerbund for a more formal touch.
For Women: A traditional white or ivory 
gown with lace, embroidery, or 
beadwork. You can choose between a 
long veil, a tiara, or a simple headpiece. 
Pair it with elegant heels and delicate 
jewelry.



Social Bias

• Gender bias

• Which word is more likely to describe a female? Giggle or Laugh

• Age bias

• Which word is more likely to describe an older person? Impressive or Amazing

• Politics bias
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Cultural Bias
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Confirmation Bias

• Sentiment analysis

• The food is good, but … → negative

• Entailment/Contradiction

• Negation words
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Spurious Correlation



Bias Can Exist Everywhere
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Bias or Features?

• Car insurance company

• Training data: 10,000 car accident reports

• Profile → insurance rate

• What if I tell you “70% has no driver’s license, 30% has license”

• P(rate | no license)

• What if I tell you “70% is under 20, 30% is over 20”

• P(rate | under 20)

• What if I tell you “70% is male, 30% is female”

• P(rate | male)
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Bias or Features?
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My Explanation

Feature Space Prediction

Gender Feature

If other neutral features exist, 
don’t use sensitive features

Feature Space Prediction

Gender Feature

If no other neutral features,
no amplification is allowed

70% male and 30% female
P(Y | male) = 70%
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Word Analogy Test

12

man: woman ≈ king: ?

argmax
𝑤

cos(𝐮𝑤 , 𝐮𝑎 − 𝐮𝑏 + 𝐮𝑐)

Paris: France ≈ London: ?

bad: worst ≈ cool: ?

word a: word b ≈ word c: ?



Word Analogy Test
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he: she ≈ brother: ?

argmax
𝑤

cos(𝐮𝑤 , 𝐮𝑎 − 𝐮𝑏 + 𝐮𝑐)word a: word b ≈ word c: ?

sister

he: she ≈ beer: ? cocktail

he: she ≈ physician: ? registered nurse 

he: she ≈ professor: ? associate professor



Identify Gender Bias Directions (Space)
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Identify Gender Bias Directions (Space)
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Identify Gender Bias Directions (Space)
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Debias with Projection

• Given a word vector 𝑥 

• Gender bias directions 𝑒1, 𝑒2, … , 𝑒𝑘
• Learn a projection 𝑊 such that 𝑊𝑥 ⊤𝑒𝑖 = 0
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Debias with Projection
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Languages with Grammatical Gender
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Languages with Grammatical Gender
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Identify Grammatical Gender Directions (Space)
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Grammatical Gender and Semantic Gender
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Grammatical Gender and Semantic Gender
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Winograd Schema Challenge

• A test of a system’s ability to perform commonsense reasoning

• The trophy doesn’t fit in the suitcase because it is too big

• Anna didn't pass the message to Jessica because she was in a hurry

• Frank felt threatened by Douglas because he was very competitive

• The city council denied the protesters a permit because they feared violence.
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WinoBias
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Examples
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Workflow
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Template
Generated Texts

Human Annotations

Positive/Negative
Sentiment Classifier
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Chain of Thought (CoT)
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Results
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Results
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Confirmation Bias/Spurious Correlation
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Neighborhood Analysis
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Neighborhood Analysis
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Spurious Score
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Can be used for spurious word detection!



Solutions - Regularization
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Results
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Evaluation for Cultural Bias
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Evaluation for Cultural Bias
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Visual Semantic Role Labeling
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Recap: Bias or Features?
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My Explanation

Feature Space Prediction

Gender Feature

If other neutral features exist, 
don’t use sensitive features

Feature Space Prediction

Gender Feature

If no other neutral features,
no amplification is allowed

70% male and 30% female
P(Y | male) = 70%



Bias Amplification
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Structured Prediction Problem
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Corpus-Level Constraints
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Lagrangian Relaxation
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Lagrangian Relaxation
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Results
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Results
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Image Captioning
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CNN-RNN Model
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Bias in Image Captioning
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Add a Confusion Loss
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Add a Confidence Loss
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Spurious Correlations

62



Group Distributionally Robust Optimization (Group DPO)
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Standard Optimization

Worst Case Optimization

Worst Group Optimization
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Just Train Twice
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Identify not easy-to-learn spurious correlations

Upweight hard examples

Previous work needs to know spurious features in advance



Debias With No Demographics 
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Previous work needs to know spurious 
features in advance
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