CSCE 689: Special Topics in Trustworthy NLP

Lecture 10: Al-Generated Text Detection

Kuan-Hao Huang khhuang@tamu.edu

Literature Review

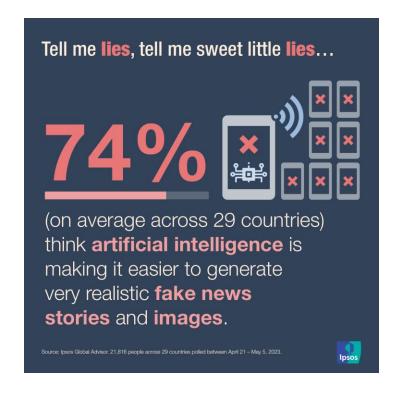
- Due: Oct 2
- Page limit: 4-5 pages
- The literature review should cover the four suggested papers and at least four additional chosen papers related to the assigned topic.
- The review should include:
 - Problem definition and importance of the topic.
 - Background and relevant context from previous works (with additional references, if applicable).
 - A comparative analysis of key methodologies and findings.
 - A critical evaluation of the strengths, limitations, and gaps in the literature.
 - A discussion of open problems and directions for future research.

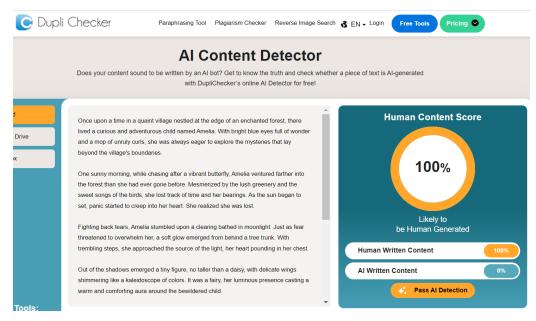
Topic Presentation

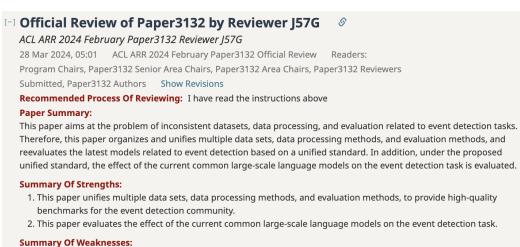
- For presenters
 - Email your slides to the instructor at least 2 days before your presentation
- For audience
 - Provide feedback on your classmates' presentations
 - Bring a pen

W6	9/29	Al-Generated Text Detection	Defending Against Neural Fake News, NeurIPS 2019 DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature, ICML 2023	Instructor
			Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability	
			Curvature, ICLR 2024	
			A Watermark for Large Language Models, ICML 2023	
	10/1	Adversarial Attacks and	Universal Adversarial Triggers for Attacking and Analyzing NLP, EMNLP 2019	Kowsalya
		Jailbreaking	BERT-ATTACK: Adversarial Attack Against BERT Using BERT, EMNLP 2020	Yihong
			Towards Robustness Against Natural Language Word Substitutions, ICLR 2021	
			JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models, NeurIPS 2024	

Al-Generated Text Detection







1. In the future, will new proposed methods and models for event detection be evaluated along uniform datasets and

2. Do you really have the same data set and processing? What about subsequent new datasets?

criteria? It's a little unlikely.

Defending Against Neural Fake News

Rowan Zellers⁴, Ari Holtzman⁴, Hannah Rashkin⁴, Yonatan Bisk⁴ Ali Farhadi^{4♥}, Franziska Roesner⁴, Yejin Choi^{4♥}

*Paul G. Allen School of Computer Science & Engineering, University of Washington

[⋄]Allen Institute for Artificial Intelligence

https://rowanzellers.com/grover

Is It Human-Written or Machine-Generated?

Why Bitcoin is a great investment

June 6, 2019 - Paul Krugman

As most of my readers know, I'm an optimist.

This belief applies across my life, and to various investments as well. So I am intrigued by the success of cryptocurrencies, such as Bitcoin and Ethereum. The competition they are putting up against the gold standard looks insane, as Bitcoin goes off to the races.

There's no way to fully understand what's going on in the crypto world — and I am not even sure anyone could if you tried to. Still, I can tell you that Bitcoin's recent surge is really an opportunity to buy long-term real assets.

Cryptocurrencies are new and don't even have a useful underlying technology. They will probably fail, probably sooner than later. If people forget about them quickly, it is likely to be because the underlying technology will finally mature and win out. We don't even know whether that will happen in a generation or maybe a century, but it's still possible it might.

Is It Human-Written or Machine-Generated?

Link found between autism and vaccines

May 29, 2019 - Sofia Ojeda

Written by Sofia Ojeda, CNN

A paper published in the journal Genetics and Human Behavior claims to find a "significant link" between autism and a type of booster vaccine given in childhood.

The paper focuses on the mercury-based preservative thimerosal and considers the possibility that the injectable vaccine contributes to autism-related symptoms.

These include poor social skills, language delays and seizures, according to the paper.

Thimerosal, which is commonly used as a preservative in vaccines, was phased out of children's vaccines in 2010.

In 2010, the Food and Drug Administration declared that thimerosal was safe.

Is It Human-Written or Machine-Generated?

Founder Rowan Zellers raises 17M in Series A round for new AI startup offering "self-driving ice cream trucks"

May 29, 2019 - Kenneth Turan

What the heck does ice cream have to do with artificial intelligence? Quite a lot, especially for a startup called Self-Realizing Ice Cream. Founder and CEO Rowan Zellers told me that the company's tagline is "our mission is to bring ice cream to everyone and everywhere," but he envisions a time not far in the future when trucks come to people to sell their ice cream, not only at a store, but on their own schedule, using AI.

After helping build his previous companies' technology into smart homes for SkyKit and Aliance, Zellers came up with a new vision for his own ice cream trucks. They'd be like the autonomous vehicles he saw in Google Self Drive, but the level of intelligence would be better. He developed an artificial intelligence platform that would identify the ice cream flavors that people like (science, not taste), and then it'd recommend a new flavor based on their previous likes.

Grover

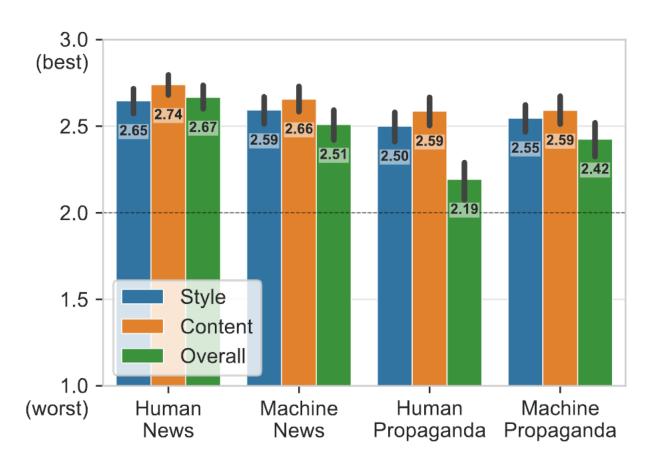
- A fake news generator
- A good fake news detector
- GPT-2 architecture

Model Joint Probability

 $p(\frac{\text{domain}}{\text{date}}, \frac{\text{date}}{\text{authors}}, \frac{\text{headline}}{\text{body}}).$



Comparison to Human-Written Articles



Results

			Un	paired A	Accuracy	y Pai	ired Acc	curacy		
			(Generato	or size		Generator size			
			1.5B	355M	124M	1.5B	355M 124M			
ę		Chance		50.0			50.0			
	1.5B	Grover-Mega	91.6	98.7	99.8	98.8	100.0	100.0		
size	355M	Grover-Large	79.5	91.0	98.7	88.7	98.4	99.9		
to		BERT-Large	68.0	78.9	93.7	75.3	90.4	99.5		
Discriminator		GPT2	70.1	77.2	88.0	79.1	86.8	95.0		
		Grover-Base	71.3	79.4	90.0	80.8	88.5	97.0		
Dis	124M	BERT-Base	67.2	75.0	82.0	84.7	90.9	96.6		
		GPT2	67.7	73.2	81.8	72.9	80.6	87.1		
	11 M	FastText	63.8	65.4	70.0	73.0	73.0	79.0		

Takeaways

- One of the earliest studies on detecting machine-generated text
- A fake news generator can effectively detect its own outputs
- Need training data for detection

DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature

Eric Mitchell 1 Yoonho Lee 1 Alexander Khazatsky 1 Christopher D. Manning 1 Chelsea Finn 1

Zero-Shot Machine-Generated Text Detection

- Zero-shot machine-generated text detection
 - No access to human-written or generated examples
- Soft black-box setting
 - We can get the probability of outputs

Some Simple Detection Methods

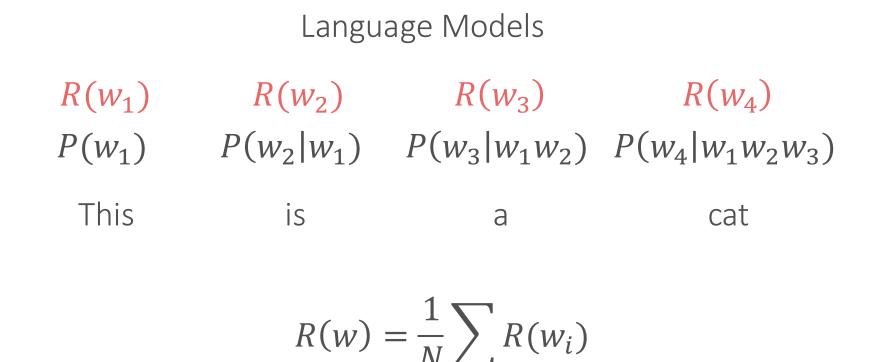
• Log-Likelihood $\log p(x)$

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$
 Language Models
$$-\frac{1}{N}$$

$$P(w_1) \quad P(w_2|w_1) \quad P(w_3|w_1w_2) \quad P(w_4|w_1w_2w_3)$$
 This is a cat

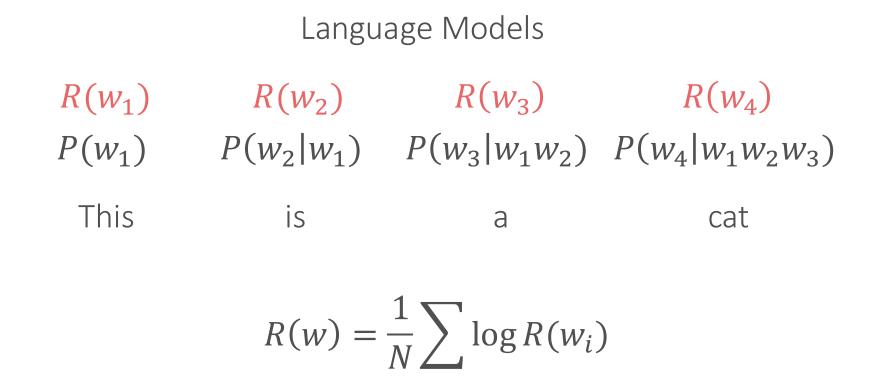
Some Simple Detection Methods

Rank



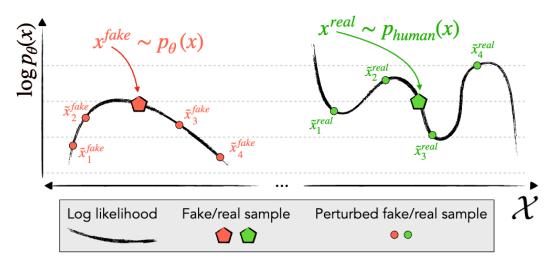
Some Simple Detection Methods

Log-Rank



Perturbation Discrepancy Gap Hypothesis

- Text generator p_{θ}
- Log probability of an example x is $\log p_{\theta}(x)$
- Slightly perturbed example \tilde{x}
- The difference $\log p_{\theta}(x) \log p_{\theta}(\tilde{x})$
 - Should be relatively large when example x is machine-generated
 - Should be relatively small when example x is human-written



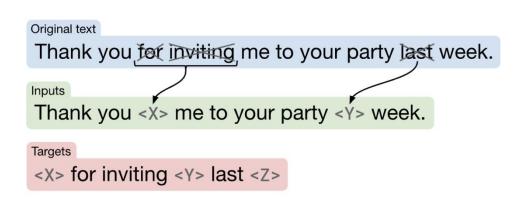
Perturbation Discrepancy Gap Hypothesis

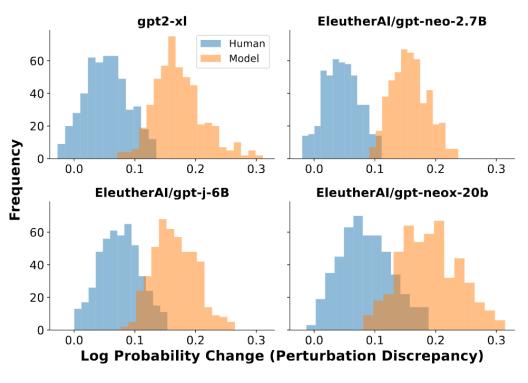
- Perturbation function $q(\cdot | x)$
- Perturbation discrepancy

$$d(x, p_{\theta}, q) = \log p_{\theta}(x) - \mathbb{E}_{\tilde{x} \sim q(\cdot | x)} \log p_{\theta}(x)$$

Perturbation Discrepancy Gap Hypothesis

- Perturbation function $q(\cdot | x)$
 - Samples from a mask-filling mode (e.g., T5)
- Perturbation discrepancy





$$d(x, p_{\theta}, q) = \log p_{\theta}(x) - \mathbb{E}_{\tilde{x} \sim q(\cdot | x)} \log p_{\theta}(x)$$

Algorithm

Algorithm 1 DetectGPT model-generated text detection

```
1: Input: passage x, source model p_{\theta}, perturbation function q, number of perturbations k, decision threshold \epsilon

2: \tilde{x}_i \sim q(\cdot \mid x), \ i \in [1..k] // mask spans, sample replacements

3: \tilde{\mu} \leftarrow \frac{1}{k} \sum_i \log p_{\theta}(\tilde{x}_i) // approximate expectation in Eq. 1

4: \hat{\mathbf{d}}_x \leftarrow \log p_{\theta}(x) - \tilde{\mu} // estimate \mathbf{d}(x, p_{\theta}, q)

5: \tilde{\sigma}_x^2 \leftarrow \frac{1}{k-1} \sum_i (\log p_{\theta}(\tilde{x}_i) - \tilde{\mu})^2 // variance for normalization

6: if \frac{\hat{\mathbf{d}}_x}{\sqrt{\tilde{\sigma}_x}} > \epsilon then

7: return true // probably model sample

8: else

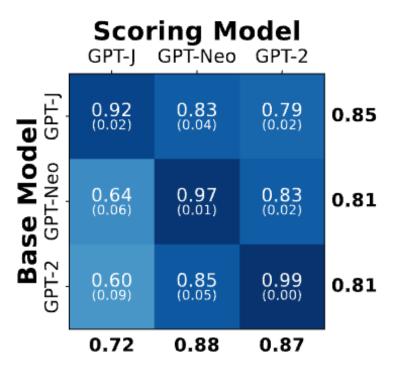
9: return false // probably not model sample
```

Results

	XSum								SQu A	AD		
Method	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.
$\log p(x)$	0.86	0.86	0.86	0.82	0.77	0.83	0.91	0.88	0.84	0.78	0.71	0.82
Rank	0.79	0.76	0.77	0.75	0.73	0.76	0.83	0.82	0.80	0.79	0.74	0.80
LogRank	0.89*	0.88*	0.90*	0.86*	0.81*	0.87*	0.94*	0.92*	0.90*	0.83*	0.76*	0.87*
DetectGPT	0.99	0.97	0.99	0.97	0.95	0.97	0.99	0.97	0.97	0.90	0.79	0.92
Diff	0.10	0.09	0.09	0.11	0.14	0.10	0.05	0.05	0.07	0.07	0.03	0.05

When Text Generator Is Not Accessible

Use another generator to compute probability instead



FAST-DETECTGPT: EFFICIENT ZERO-SHOT DETECTION OF MACHINE-GENERATED TEXT VIA CONDITIONAL PROBABILITY CURVATURE

Guangsheng Bao

Zhejiang University School of Engineering, Westlake University baoguangsheng@westlake.edu.cn

Yanbin Zhao

School of Mathematics, Physics and Statistics, Shanghai Polytechnic University zhaoyb553@nenu.edu.cn

Zhiyang Teng

Nanyang Technological University zhiyang.teng@ntu.edu.sg

Linyi Yang, Yue Zhang*

School of Engineering, Westlake University
Institute of Advanced Technology, Westlake Institute for Advanced Study
{yanglinyi, zhangyue}@westlake.edu.cn

Problem for DetectGPT

$$d(x, p_{\theta}, q) = \log p_{\theta}(x) - \mathbb{E}_{\tilde{x} \sim q(\cdot | x)} \log p_{\theta}(x)$$

Algorithm 1 DetectGPT model-generated text detection

1: **Input:** passage x, source model p_{θ} , perturbation function q, number of perturbations k, decision threshold ϵ

```
Time-consuming 2: \tilde{x}_i \sim q(\cdot \mid x), i \in [1..k] // mask spans, sample replacements 3: \tilde{\mu} \leftarrow \frac{1}{k} \sum_i \log p_{\theta}(\tilde{x}_i) // approximate expectation in Eq. 1 4: \mathbf{d}_x \leftarrow \log p_{\theta}(x) - \tilde{\mu} // estimate \mathbf{d}(x, p_{\theta}, q) 5: \tilde{\sigma}_x^2 \leftarrow \frac{1}{k-1} \sum_i (\log p_{\theta}(\tilde{x}_i) - \tilde{\mu})^2 // variance for normalization
```

4:
$$\mathbf{d}_x \leftarrow \log p_{\theta}(x) - \tilde{\mu}$$
 // estimate $\mathbf{d}(x, p_{\theta}, q)$

5:
$$\tilde{\sigma}_x^2 \leftarrow \frac{1}{k-1} \sum_i (\log p_\theta(\tilde{x}_i) - \tilde{\mu})^2$$
 // variance for normalization

6: if
$$\frac{\hat{\mathbf{d}}_x}{\sqrt{\tilde{\sigma}_x}} > \epsilon$$
 then

8: **else**

// probably not model sample return false

Problem for DetectGPT

- This restaurant is extremely good, and I will give it a 5-star.
- This restaurant is impressively good, and I will rate it a 5-star.
- This restaurant is extremely great, and I will give it a 5-score.
- The restaurant is extremely good, and I would give it a 5-star.
- This restaurant is extremely good, and I will give it a 5-star.

We need to compute the probability for every single perturbed examples

Conditional Probability Function

$$p_{ heta}(\tilde{x}|x) = \prod_{j} p_{ heta}(\tilde{x}_{j}|x_{< j})$$

- This restaurant is [?]
- This restaurant is extremely good, and I will give it a 5-star.
- This restaurant is impressively good, and I will rate it a 5-star.

Conditional Probability Function

$$p_{\theta}(\tilde{x}|x) = \prod_{j} p_{\theta}(\tilde{x}_{j}|x_{< j})$$

- This restaurant is extremely [?]
- This restaurant is extremely good, and I will give it a 5-star.
- This restaurant is extremely great, and I will give it a 5-score.

Conditional Probability Function

$$p_{\theta}(\tilde{x}|x) = \prod_{j} p_{\theta}(\tilde{x}_{j}|x_{< j})$$

- This restaurant is extremely good, and I will give it a 5-[?]
- This restaurant is extremely good, and I will give it a 5-star.
- This restaurant is extremely good, and I will give it a 5-score.

Conditional Probability Curvature

$$\mathbf{d}(x,p_{\theta},q_{\varphi}) = \frac{\log p_{\theta}(x|x) - \tilde{\mu}}{\tilde{\sigma}}$$

$$\tilde{\mu} = \mathbb{E}_{\tilde{x} \sim q_{\varphi}(\tilde{x}|x)} \left[\log p_{\theta}(\tilde{x}|x) \right] \quad \text{and} \quad \tilde{\sigma}^2 = \mathbb{E}_{\tilde{x} \sim q_{\varphi}(\tilde{x}|x)} \left[(\log p_{\theta}(\tilde{x}|x) - \tilde{\mu})^2 \right]$$

Probability curvature proposed by DetectGPT

$$d(x, p_{\theta}, q) = \log p_{\theta}(x) - \mathbb{E}_{\tilde{x} \sim q(\cdot | x)} \log p_{\theta}(x)$$

Algorithm

$$\mathbf{d}(x, p_{\theta}, q_{\varphi}) = \frac{\log p_{\theta}(x|x) - \tilde{\mu}}{\tilde{\sigma}}$$

Algorithm 1 Fast-DetectGPT machine-generated text detection.

Input: passage x, sampling model q_{φ} , scoring model p_{θ} , and decision threshold ϵ **Output**: True – probably machine-generated, False – probably human-written.

- 1: **function** FASTDETECTGPT $(x, q_{\varphi}, p_{\theta})$
- $ilde{x}_i \sim q_{\varphi}(\tilde{x}|x), i \in [1..N]$ $ilde{\mu} \leftarrow \frac{1}{N} \sum_i \log p_{\theta}(\tilde{x}_i|x)$
- $\tilde{\sigma}^2 \leftarrow \frac{1}{N-1} \sum_i (\log p_{\theta}(\tilde{x}_i|x) \tilde{\mu})^2$
- $\hat{\mathbf{d}}_x \leftarrow (\log p_{\theta}(x) \tilde{\mu})/\tilde{\sigma}$
- return $\hat{\mathbf{d}}_x > \epsilon$

- - ▶ Estimate the mean
- ▷ Estimate the variance
- ▶ Estimate conditional probability curvature
- This restaurant is extremely good, and I will give it a 5-star.
 - This [?]
 - This restaurant [?]
 - This restaurant is [?]

White-box: sampled from text generator

Black-box: sampled from an alternative generator

Results for White-Box Setting

Method	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.					
The White-Box Setting											
Likelihood	0.9125	0.8963	0.8900	0.8480	0.7946	0.8683					
Entropy	0.5174	0.4830	0.4898	0.5005	0.5333	0.5048					
LogRank	0.9385	0.9223	0.9226	0.8818	0.8313	0.8993					
LRR	0.9601	0.9401	0.9522	0.9179	0.8793	0.9299					
DNA-GPT ♦	0.9024	0.8797	0.869	0.8227	0.7826	0.8513					
$NPR \diamondsuit$	0.9948†	0.9832†	0.9883	0.9500	0.9065	0.9645					
DetectGPT $\overline{(T5-3B/*)}$ \Diamond	0.9917	-0.9758^{-}	$\bar{0}.\bar{9}7\bar{9}7^{\bar{-}}$	0.9353	0.8943	0.9554					
Fast-DetectGPT (*/*)	0.9967	0.9908	0.9940†	0.9866	0.9754	0.9887					
(Relative↑)	60.2%	62.0%	70.4%	79.3%	76.7%	74.7%					

Results for Black-Box Setting

Madhad	ChatGPT				GPT-4			
Method	XSum	Writing	PubMed	Avg.	XSum	Writing	PubMed	Avg.
RoBERTa-base	0.9150	0.7084	0.6188	0.7474	0.6778	0.5068	0.5309	0.5718
RoBERTa-large	0.8507	0.5480	0.6731	0.6906	0.6879	0.3821	0.6067	0.5589
GPTZero	0.9952	0.9292	0.8799	0.9348	0.9815	0.8262	0.8482	0.8853
Likelihood (Neo-2.7)	0.9578	0.9740	0.8775	0.9364	0.7980	0.8553	0.8104	0.8212
Entropy (Neo-2.7)	0.3305	0.1902	0.2767	0.2658	0.4360	0.3702	0.3295	0.3786
LogRank(Neo-2.7)	0.9582	0.9656	0.8687	0.9308	0.7975	0.8286	0.8003	0.8088
LRR (Neo-2.7)	0.9162	0.8958	0.7433	0.8518	0.7447	0.7028	0.6814	0.7096
DNA-GPT (Neo-2.7)	0.9124	0.9425	0.7959	0.8836	0.7347	0.8032	0.7565	0.7648
NPR (T5-11B/Neo-2.7)	0.7899	0.8924	0.6784	0.7869	0.5280	0.6122	0.6328	0.5910
DetectGPT (T5-11B/Neo-2.7)	0.8416	0.8811^{-}	0.7444	$0.82\overline{23}$	0.5660	$0.62\overline{1}7^{-}$	0.6805	$0.6\overline{2}2\overline{8}$
Fast-Detect (GPT-J/Neo-2.7)	0.9907	0.9916	0.9021	0.9615	0.9067	0.9612	0.8503	0.9061
(Relative ↑)	94.1%	92.9%	61.7%	78.3%	78.5%	89.7%	53.1%	75.1%

Speed Improvement

Method	5-Model Generations \uparrow	ChatGPT/GPT-4 Generations ↑	Speedup ↑
DetectGPT	0.9554	0.7225	1x
Fast-DetectGPT	0.9887 (relative↑ 74.7%)	0.9338 (relative↑ 76.1%)	340x

Red Teaming Language Model Detectors with Language Models

Zhouxing Shi*, Yihan Wang*, Fan Yin*, Xiangning Chen, Kai-Wei Chang, Cho-Jui Hsieh
University of California, Los Angeles
{zshi, yihanwang, fanyin20, xiangning, kwchang, chohsieh}@cs.ucla.edu
*Alphabetical order

Detectors Can Be Attacked

- Perturb machine-generated text
 - Query-free word replacement
 - Query-based word replacement
 - Paraphrasing text

Results

Generative Model	Dataset	Unattacked	Dipper Paraphrasing	Query-free Substitution	Query-based Substitution
GPT-2-XL	XSum	84.4	35.2	25.9	3.9
GF 1-2-XL	ELI5	70.6	36.7	21.2	3.8
ChatGPT	XSum	56.0	34.6	25.6	4.5
	ELI5	55.0	39.5	12.2	6.5
LLaMA-65B	XSum	59.3	49.0	25.5	9.9
LLaMA-03B	ELI5	60.5	53.1	31.4	18.6

Watermarking

- Post-detection can be hard
- Add watermark during training/generating
 - Watermark should not affect too much to the generation quality
 - Watermark cannot be too obvious
 - Watermark verification needs to be viable
 - Watermark cannot be removed easily

A Watermark for Large Language Models

John Kirchenbauer * Jonas Geiping * Yuxin Wen Jonathan Katz Ian Miers Tom Goldstein University of Maryland

Assumptions

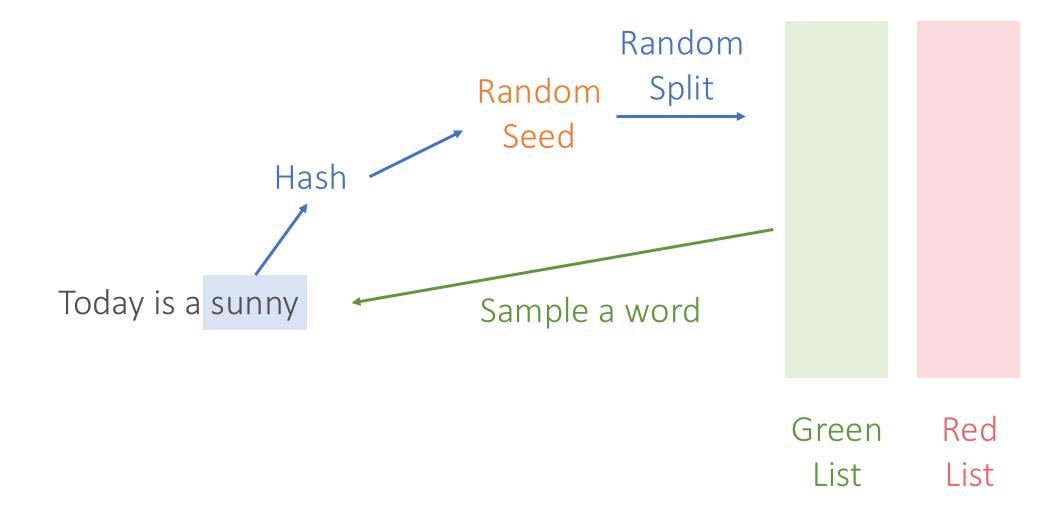
- Add watermark when generating texts
- We have the access to the vocabulary of the model

Watermarking Example

Prompt			
The watermark detection algorithm can be made public, enabling third parties (e.g., social media platforms) to run it themselves, or it can be kept private and run behind an API. We seek a watermark with the following properties:	Num tokens	Z-score	p-value
No watermark Extremely efficient on average term lengths and word frequencies on synthetic, microamount text (as little as 25 words) Very small and low-resource key/hash (e.g., 140 bits per key is sufficient	56	.31	.38
for 99.9999999999 of the Synthetic Internet			
With watermark - minimal marginal probability for a detection attempt. - Good speech frequency and energy rate reduction. - messages indiscernible to humans. - easy for humans to verify.	36	7.4	6e-14

How to decide green/red words?

Text Generation with Hard Red List



Text Generation with Hard Red List

- The chance of a random text has a valid watermark
 - $\left(\frac{1}{2}\right)^T$ for a length T text
- Watermark detection
 - Statistic way: one proportion z-test

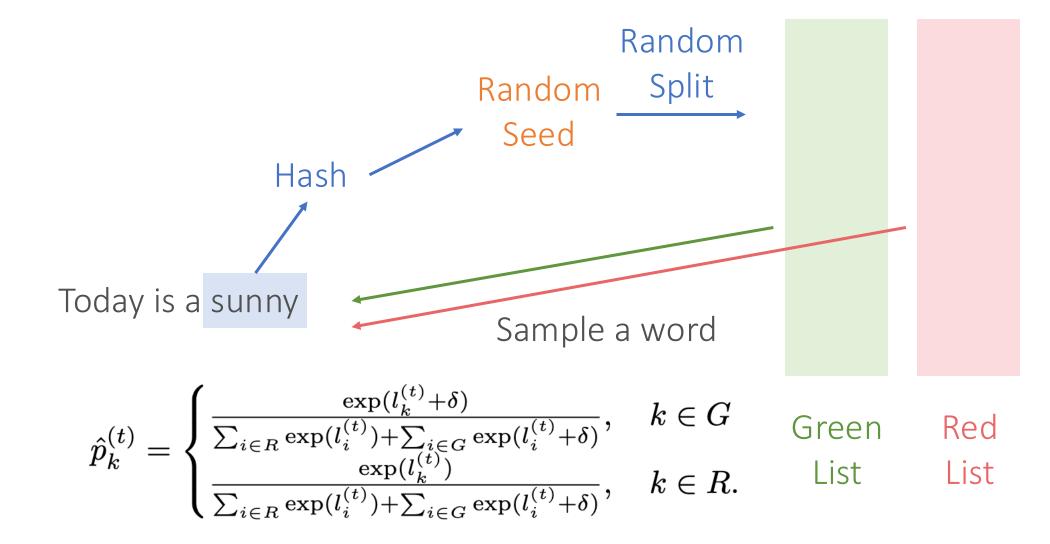
$$z = 2(|s|_G - T/2)/\sqrt{T}$$
.

- If z >threshold \rightarrow having watermark
- z > 4, the probability of a false positive is $3 \times 10e-5$

Text Generation with Hard Red List

- Generated texts can be not natural for certain cases
 - Barack Obama

Text Generation with Soft Red List



Text Generation with Soft Red List

Algorithm 2 Text Generation with Soft Red List

Input: prompt,
$$s^{(-N_p)} \cdots s^{(-1)}$$
 green list size, $\gamma \in (0,1)$ hardness parameter, $\delta > 0$

for
$$t=0,1,\cdots$$
 do

- 1. Apply the language model to prior tokens $s^{(-N_p)}\cdots s^{(t-1)}$ to get a logit vector $l^{(t)}$ over the vocabulary.
- 2. Compute a hash of token $s^{(t-1)}$, and use it to seed a random number generator.
- 3. Using this random number generator, randomly partition the vocabulary into a "green list" G of size $\gamma |V|$, and a "red list" R of size $(1 \gamma)|V|$.
- 4. Add δ to each green list logit. Apply the softmax operator to these modified logits to get a probability distribution over the vocabulary.

$$\hat{p}_k^{(t)} = \begin{cases} \frac{\exp(l_k^{(t)} + \delta)}{\sum_{i \in R} \exp(l_i^{(t)}) + \sum_{i \in G} \exp(l_i^{(t)} + \delta)}, & k \in G\\ \frac{\exp(l_k^{(t)})}{\sum_{i \in R} \exp(l_i^{(t)}) + \sum_{i \in G} \exp(l_i^{(t)} + \delta)}, & k \in R. \end{cases}$$

5. Sample the next token, $s^{(t)}$, using the watermarked distribution $\hat{p}^{(t)}$.

Text Generation with Soft Red List

Theorem 4.2. Consider watermarked text sequences of T tokens. Each sequence is produced by sequentially sampling a raw probability vector $p^{(t)}$ from the language model, sampling a random green list of size γN , and boosting the green list logits by δ using Equation 4 before sampling each token. Define $\alpha = \exp(\delta)$, and let $|s|_G$ denote the number of green list tokens in sequence s.

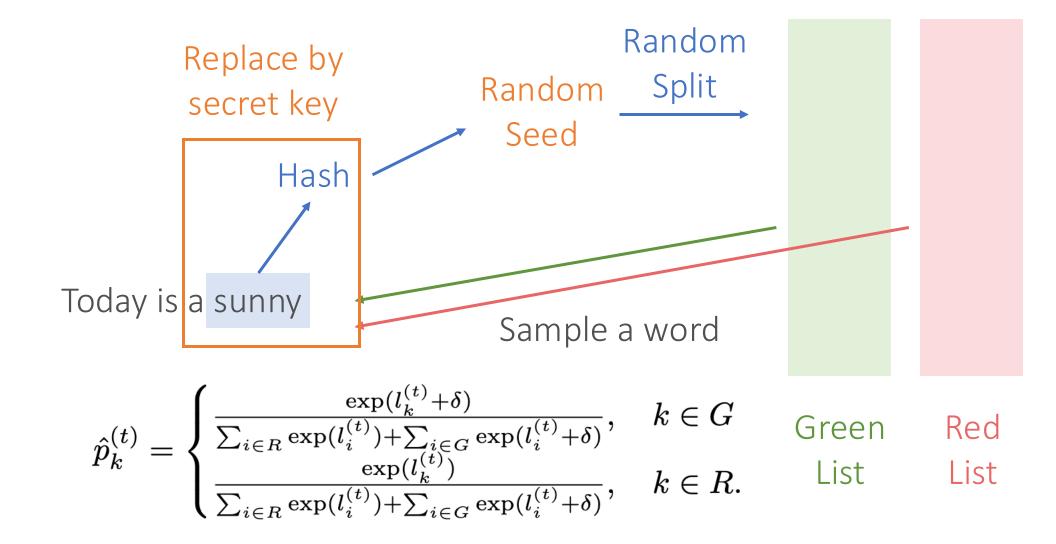
If a randomly generated watermarked sequence has average spike entropy at least S^* , i.e.,

$$\frac{1}{T} \sum_{t} S\left(p^{(t)}, \frac{(1-\gamma)(\alpha-1)}{1+(\alpha-1)\gamma}\right) \ge S^{\star},$$

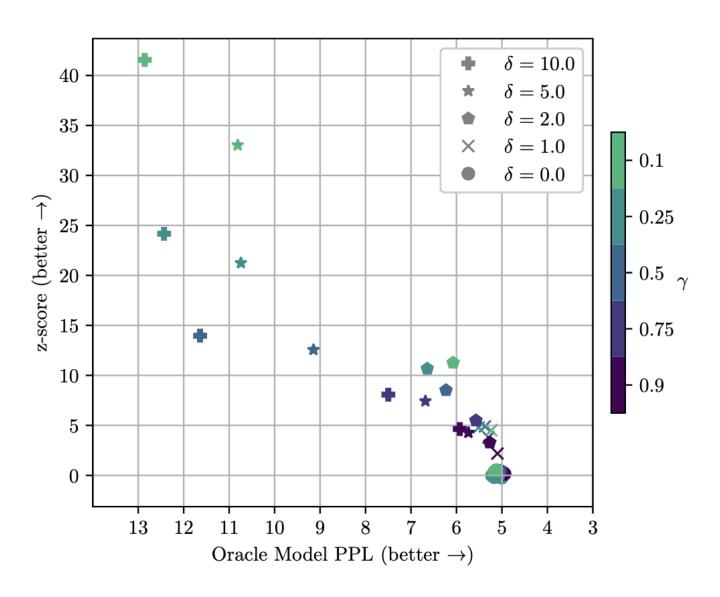
then the number of green list tokens in the sequence has expected value at least

$$\mathbb{E}|s|_G \ge \frac{\gamma \alpha T}{1 + (\alpha - 1)\gamma} S^*,$$

Private Watermarking



Text Generation Quality



Text Generation Quality

prompt	real completion	no watermark (NW)	watermarked (W)
tled out of court and publicly reconciled. \nIn the '80s the band's popularity waned in the United States but remained strong abroad. Robin released three solo albums, with limited success. The Bee Gees	returned with some moderate hits in the late 1990s and were inducted into the Rock and Roll Hall of Fame in 1997. With his brothers, Mr. Gibb won six Grammys.\nIn addition to his wife and his brother [continues]	continued to tour, and Barry became a television producer.\nBut in the early '90s, the Bee Gees' popularity remained high. They scored a hit with "Don't Stop Believing" in 1990, and in 1992 the Bee Ge[continues]	' 1990 album, "Spirits of the Century," was a mixed critical and commercial success. \nWhen the brothers were nominated for a Grammy Award in 1990, Mr. Gibb's "You Should Be Dancing" and "Massachusetts,[continues]
logged into their Google account and have verified profiles that match queries for the site.\nGoogle's John Mueller said there is no ranking benefit in using different Google Search Console and Google	Analytics accounts for each individual web site you manage. The topic came up before, as long as you are not spamming Google - there also is no down side to using the same accounts across multiple we[continues]	Analytics data to calculate ranking sentiment.\nGoogle have a new feature called Keyword Difficulty Analysis that shows you the keywords your competitors are ranking for. It shows the demand curve as [continues]	+ accounts to see different numbers.\nGoogle also released their own great blog post on the news algorithm. They give lots of great advice to help your site do better.\nFinally, at the end of September [continues]

Watermark Detection Results

				z=4.0			z=5.0				
sampling	δ	γ	count	FPR	TNR	TPR	FNR	FPR	TNR	TPR	FNR
m-nom.	1.0	0.50	506	0.0	1.0	0.767	0.233	0.0	1.0	0.504	0.496
m-nom.	1.0	0.25	506	0.0	1.0	0.729	0.271	0.0	1.0	0.482	0.518
m-nom.	2.0	0.50	507	0.0	1.0	0.984	0.016	0.0	1.0	0.978	0.022
m-nom.	2.0	0.25	505	0.0	1.0	0.994	0.006	0.0	1.0	0.988	0.012
m-nom.	5.0	0.50	504	0.0	1.0	0.996	0.004	0.0	1.0	0.992	0.008
m-nom.	5.0	0.25	503	0.0	1.0	1.000	0.000	0.0	1.0	0.998	0.002
8-beams	1.0	0.50	495	0.0	1.0	0.873	0.127	0.0	1.0	0.812	0.188
8-beams	1.0	0.25	496	0.0	1.0	0.819	0.181	0.0	1.0	0.770	0.230
8-beams	2.0	0.50	496	0.0	1.0	0.992	0.008	0.0	1.0	0.984	0.016
8-beams	2.0	0.25	496	0.0	1.0	0.994	0.006	0.0	1.0	0.990	0.010
8-beams	5.0	0.50	496	0.0	1.0	1.000	0.000	0.0	1.0	1.000	0.000
8-beams	5.0	0.25	496	0.0	1.0	1.000	0.000	0.0	1.0	1.000	0.000

How About Attacks?

- Perturb machine-generated text
 - Query-free word replacement
 - Query-based word replacement
 - Paraphrasing text

Attacking Results

sampling	arepsilon	count	TPR@4.0	FNR@4.0	attck R@4.0	w/attck FNR@4.0	TPR@5.0	FNR@5.0	/attck R@5.0	w/attck FNR@5.0
m-nom.	0.1	487	0.984	0.016	0.819	0.181	0.977	0.023	0.577	0.423
m-nom.	0.3	487	0.984	0.016	0.353	0.647	0.977	0.023	0.127	0.873
m-nom.	0.5	487	0.984	0.016	0.094	0.906	0.977	0.023	0.029	0.971
m-nom.	0.7	487	0.984	0.016	0.039	0.961	0.977	0.023	0.012	0.988
beams	0.1	489	0.998	0.002	0.834	0.166	0.998	0.002	0.751	0.249
beams	0.3	489	0.998	0.002	0.652	0.348	0.998	0.002	0.521	0.479
beams	0.5	489	0.998	0.002	0.464	0.536	0.998	0.002	0.299	0.701
beams	0.7	489	0.998	0.002	0.299	0.701	0.998	0.002	0.155	0.845

SEMSTAMP: A Semantic Watermark with Paraphrastic Robustness for Text Generation

Abe Bohan Hou[♣]* Jingyu Zhang[♣]* Tianxing He[♡]*

Yichen Wang[⋄] Yung-Sung Chuang[♠] Hongwei Wang[‡] Lingfeng Shen[♣]

Benjamin Van Durme[♣] Daniel Khashabi[♣] Yulia Tsvetkov[♡]

♣Johns Hopkins University [♡]University of Washington [⋄]Xi'an Jiaotong University

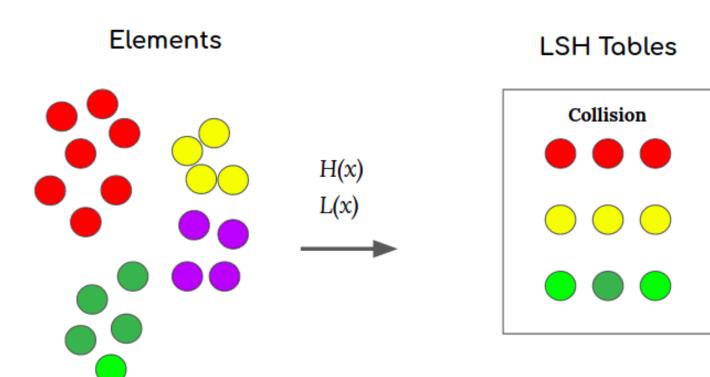
♠Massachusetts Institute of Technology [‡]Tencent AI Lab

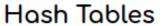
{bhou4, jzhan237}@jhu.edu goosehe@cs.washington.edu

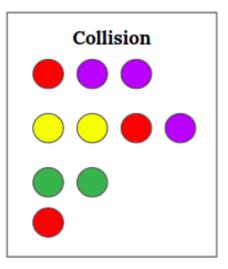
How About Attacks?

- Perturb machine-generated text
 - Query-free word replacement
 - Query-based word replacement
 - Paraphrasing text

Locality-Sensitive Hashing (LSH)

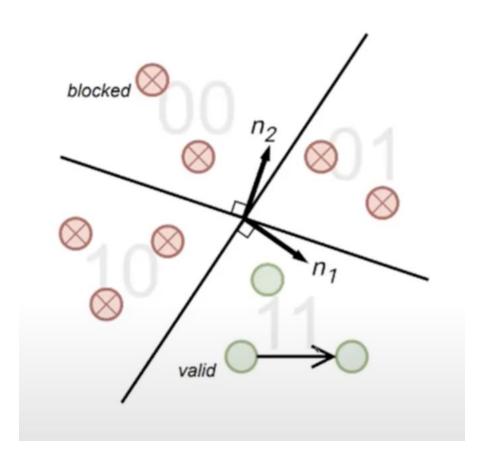






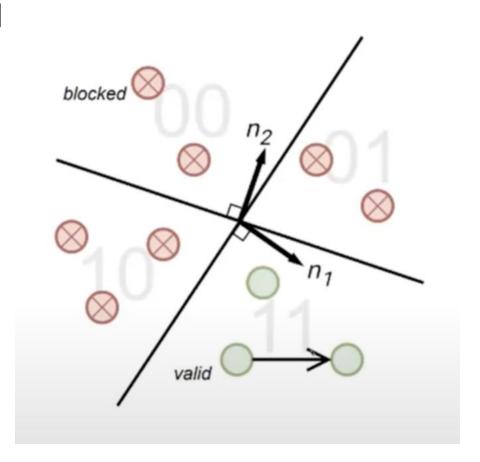
Sentence Encoder

- Semantic encoder robust to paraphrasing
 - SentenceBERT, SimCSE, etc.

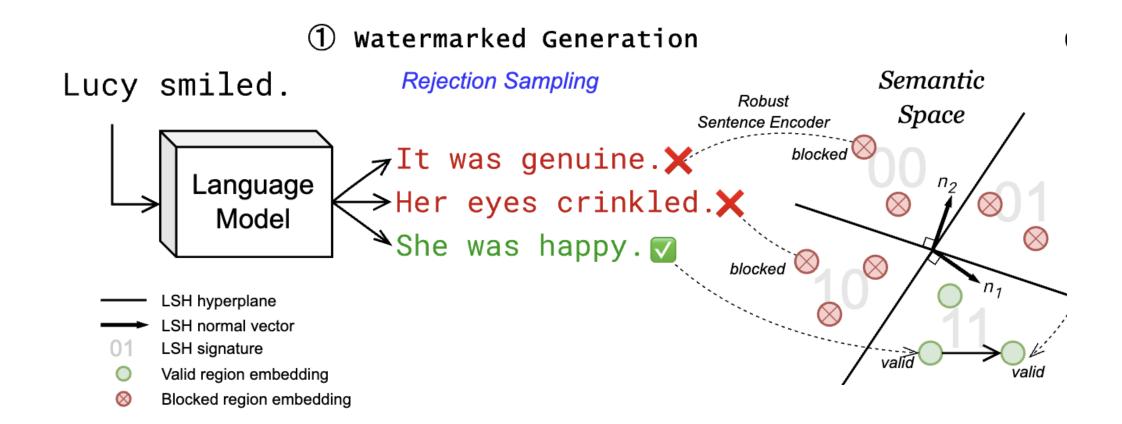


Partition with LSH

- Each dot is a potential next sentence sampled from LM
- LSH partitions the semantic space through random hyperplanes
- Divide the semantic space into valid and blocked regions by hashing on the previous sentence



Generation Overview



Paraphrase Attack

2 Paraphrase Attack

Watermark remains valid after paraphrase

✓ She felt delighted.

3 Watermark detecton

No Watermark

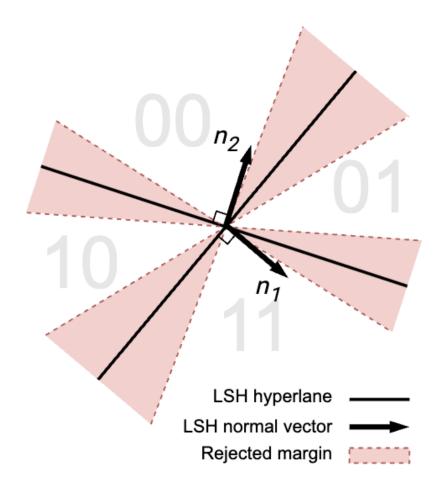
Today the company announced results for the third quarter of 2017. The company's board of directors also declared a quarterly cash dividend of \$0.23 per share. The dividend is payable to shareholders of record on November 14, 2017. Shareholders are invited to attend the company's annual meeting to propose and discuss a proposal to adopt a new long-term stockholder's plan. The meeting will be held on December 7, 2017.

SEMSTAMP

Today the company announced quarterly results for the period ending October 31, 2017. The company also provided an update on its ongoing Phase 3 clinical trial of the Phase 2/3 B-cellderived T cell engager program. These results are included in a newly released Current Report on Form 8-K for the period ending September 30, 2017. You can read the full report at www.curis.com.

Consider Margin for Robustness

- Sentence encoder is not perfect
- Only accept sentences with distance larger than a margin



Results

		RealNews BookSum Reddit-TIFU							
Paraphraser	Algorithm	<i>AUC</i> ↑	<i>TP</i> @1% ↑	<i>TP</i> @5% ↑					
No Porophroso	KGW	99.6 99.9 99.3	98.4 99.4 97.5	98.9 99.5 98.1					
No Paraphrase	SSTAMP	99.2 99.7 99.7	93.9 98.8 97.7	97.1 99.1 98.2					
Pegasus	KGW	95.9 97.3 94.1	82.1 89.7 87.2	91.0 95.3 87.2					
1 egasus	SSTAMP	97.8 99.2 98.4	83.7 90.1 92.8	92.0 96.8 95.4					
Danagua hiamam	KGW	92.1 96.5 91.7	42.7 56.6 67.2	72.9 85.3 67.6					
Pegasus-bigram	SSTAMP	96.5 98.9 98.0	76.7 86.8 89.0	86.0 94.6 92.9					
Parrot	KGW	88.5 94.6 79.5	31.5 42.0 22.8	55.4 75.8 43.3					
1 arrot	SSTAMP	93.3 97.5 90.2	56.2 70.3 56.2	75.5 88.5 70.5					
Downet biomen	KGW	83.0 93.1 82.8	15.0 39.9 27.6	37.4 71.2 49.7					
Parrot-bigram	SSTAMP	93.1 97.5 93.9	54.4 71.4 71.8	74.0 89.4 82.3					
GPT3.5	KGW	82.8 87.6 84.1	17.4 17.2 27.3	46.7 52.1 50.9					
GF13.3	SSTAMP	83.3 91.8 87.7	33.9 55.0 47.5	52.9 70.8 58.2					
CDT2 5 1:	KGW	75.1 77.1 79.8	5.9 4.4 19.3	26.3 27.1 41.3					
GPT3.5-bigram	SSTAMP	82.2 90.5 87.4	31.3 47.4 43.8	48.7 63.6 55.9					