Generating Syntactically Controlled Paraphrases without Using Annotated Parallel Pairs

Kuan-Hao Huang and Kai-Wei Chang

University of California, Los Angeles

EACL 2021
Paraphrase Generation Tasks

• Build a paraphrase model
 • Input sentence \rightarrow output paraphrase

• Supervised approaches
 • Need many annotated paraphrase pairs for training

• Unsupervised approaches
 • Generated paraphrases are not diverse in syntax

• Our goal
 • Generate syntactically diverse paraphrases
 • Train a paraphrase model without using annotated paraphrase pairs
Syntactically Controlled Paraphrase Generation

• Control the syntax of output paraphrases [Iyyer+ 2018]
• Give model target parse templates as control signals
• Challenges
 • No ground truths
 • Syntactic control

We are going to have a picnic if it is a sunny day tomorrow.

If tomorrow is a sunny day, we will have a picnic.

We will have a picnic if it is a sunny day tomorrow.

Let's have a picnic if tomorrow is a sunny day.
Syntactically Controlled Paraphrase Generator (SynPG)

• Disentangle a sentence into syntactic and semantic embedding
 • Syntactic embedding: encoded from constituency parse
 • Semantic embedding: encoded from bag of words

Sentence ➔ Constituency Parse ➔ Syntactic Embedding
Sentence ➔ Words w/o Order ➔ Semantic Embedding
Syntactically Controlled Paraphrase Generator (SynPG)

- Learn a decoder to reconstruct the input sentence
 - Reconstruction: no need for annotated paraphrase pairs
 - Disentanglement: ability to control syntax
Syntactically Controlled Paraphrase Generator (SynPG)

- Generate a paraphrase by replacing the syntactic embedding with the target parse information
Word Dropout

- Add word dropout to encourage the model to generate words not appearing in the input sentence
Evaluation on Syntactic Control Ability

- Consider paraphrase pair \((s_1, s_2)\)
 - Get the parse \((p_1, p_2)\)
 - \((\text{input sentence, parse template}) = (s_1, p_2)\)
 - Ground truth is \(s_2\)
- Evaluation metrics
 - **BLEU score**: similarity between the prediction and \(s_2\)
 - **Template matching accuracy (TMA)**: how accurately the prediction follows \(p_2\) based on exact match on top-2 layers of parse tree
- Test on four paraphrase datasets (ParaNMT, Quora, PAN, and MRPC)
Comparison with Unsupervised Models

- Compared models
 - Back Translation (BackTrans), Vanilla VAE (VAE), Syntax-Infused VAE (SIVAE) [Zhang+ 2019]
 - Better syntactic control ability
Comparison with Supervised Models

- Compared models
 - Seq2seq Model (Seq2seq), Syntactically Controlled Paraphrase Network (SCPN) [Iyyer+ 2018]
- Competitive performance to supervised models
- No need for annotated data → boost performance by considering larger corpus
<table>
<thead>
<tr>
<th>Template</th>
<th>Generated Paraphrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td></td>
</tr>
<tr>
<td>(S (NP) (VP) (.))</td>
<td>can you adjust the cameras?</td>
</tr>
<tr>
<td>(S (NP) (VP) (.))</td>
<td>you can adjust the cameras.</td>
</tr>
<tr>
<td>(S (ADVP) (NP) (VP) (.))</td>
<td>well, adjust the cameras, can you?</td>
</tr>
<tr>
<td>(S (PP) (.) (NP) (VP) (.))</td>
<td>on the cameras, you can adjust them?</td>
</tr>
<tr>
<td>Original</td>
<td></td>
</tr>
<tr>
<td>(S (WHADVP) (SQ) (.))</td>
<td>she doesn’t keep pictures from her childhood.</td>
</tr>
<tr>
<td>(S (NP) (VP) (‘’))</td>
<td>why doesn’t she keep her pictures from childhood.</td>
</tr>
<tr>
<td>(S (ADVP) (NP) (VP) (.))</td>
<td>“ she doesn’t keep pictures from her childhood ” she said.</td>
</tr>
<tr>
<td>(S (ADVP) (NP) (VP) (.))</td>
<td>perhaps she doesn’t keep pictures from her childhood.</td>
</tr>
</tbody>
</table>
Improve Model Robustness with Data Augmentation

- Focus on text classification tasks
- Generate syntactically paraphrases for data augmentation
- More robust against syntactically adversarial attacks [Iyyer+ 2018]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>91.9</td>
<td>46.7</td>
<td>84.1</td>
<td>52.8</td>
<td>63.2</td>
<td>58.3</td>
</tr>
<tr>
<td>SynPG</td>
<td>88.9</td>
<td>39.6</td>
<td>80.1</td>
<td>35.5</td>
<td>60.7</td>
<td>33.9</td>
</tr>
</tbody>
</table>
Conclusion

- We present SynPG to generate syntactically controlled paraphrases without using annotated paraphrase pairs
- SynPG uses a novel architecture to disentangle a sentence into semantics and syntax
- Extensive experimental results demonstrate the superiority of SynPG
- We show that SynPG can help to improve the model robustness

Code and pre-trained models are available at https://github.com/uclanlp/synpg

Thank You!