Improving Zero-Shot Cross-Lingual Transfer Learning via Robust Training

Kuan-Hao Huang, Wasi Uddin Ahmad, Nanyun (Violet) Peng, and Kai-Wei Chang University of California, Los Angeles

EMNLP 2021

Zero-Shot Cross-Lingual Transfer

- Learn a model *f* from training examples in source languages
- Apply the model *f* to testing examples in target languages
- Challenge: how to transfer knowledge across different languages
- Reduce the requirement of labeled data for low-resource languages

Positive
Positive
Negative
Negative

Training

Target language: Chinese, French	
这家餐厅很评价很好。	Positive
食物超级难吃。	Negative
J'aime ce resto.	Positive
Je ne viendrais plus jamais ici.	Negative

Testing

Why Zero-Shot Cross-Lingual Transfer is Possible

- Pre-trained multilingual language models learn aligned representations
 - Multilingual BERT [Devlin+ 2019], XLM-R [Conneau+ 2020]
- Words with similar meanings in different languages have similar representations [Cao+ 2020]
- This alignment makes zero-shot cross-lingual transfer become possible

The multilingual alignment is not perfect!

Learning Better Multilingual Alignment

- Prior studies learn a better multilingual alignment with additional resources
 - Bilingual dictionary [Cao+ 2020, Qin+ 2020, Liu+ 2020]
 - Parallel sentence pairs [Chi+ 2020, Feng+ 2020, Wei+ 2021]
- Better multilingual alignment leads to better transfer performance

Can we learn a better model without using additional resources?

Robustness View of Zero-Shot Cross-Lingual Transfer

- Consider a pair of parallel sentences
 - "this is a cat" in English and "Ceci est un chat" in French

Robustness View of Zero-Shot Cross-Lingual Transfer

- If $f(E_{tgt}) = f(E_{src})$, transfer is successful
- Otherwise, we have

 $f(E_{tgt}) = f(E_{src} + \delta) \neq f(E_{src})$ where $||\delta_i||$ is small

Compared to Definition of Adversarial Perturbations

- Definition of adversarial perturbations [Goodfellow+ 2014, Alzantot+ 2018]
 - Given an instance x and a model h, the adversarial perturbation is Δ such that

 $h(\tilde{x}) = h(x + \Delta) \neq h(x)$ where $||\Delta||$ is small

- Failure case of zero-shot cross-lingual transfer
 - Given a source representation E_{src} and a target representations E_{tgt}

 $f(E_{tgt}) = f(E_{src} + \delta) \neq f(E_{src})$ where $||\delta_i||$ is small

Robust training against adversarial perturbations can help zero-shot cross-lingual transfer!

Robust Training — Adversarial Training

• Normal training

 $\min_{f} \sum_{(x,y)\in X_{src}} \mathcal{L}(f(x), y)$

- Adversarial training [Ebrahimi+ 2018, Dong+ 2021, Zhou+ 2021]
 - Find the most effective perturbation

$$\min_{f} \sum_{(x,y)\in X_{src}} \max_{||\delta_i||\leq \epsilon} \mathcal{L}(f(x+\delta), y)$$

Robust Training — Randomized Smoothing (Random Perturbation)

• Normal training

$$\min_{f} \sum_{(x,y) \in X_{src}} \mathcal{L}(f(x), y)$$

- Randomized smoothing [Cohen+ 2019]
 - Consider the expectation case

$$\min_{f} \sum_{(x,y)\in X_{src}} \mathbb{P}_{\delta}(\mathcal{L}(f(x+\delta), y))$$

Robust Training — Randomized Smoothing (Data Augmentation)

- Randomized smoothing by data augmentation with synonyms [Ye+ 2020]
- Every word is replaced by one of its synonym (including itself)
 - Original example
 - This restaurant looks beautiful and its food is great.
 - Augmented examples
 - The restaurant looks pretty and its food is great.
 - This restaurant looks beautiful and its food is good.
 - This restaurant looks pretty and its food is nice.

• ...

• Train a smooth model with augmented data

Experimental Results on PAWS-X

- (sentence1, sentence2) \rightarrow are paraphrase or not
- Transfer from English to other languages

10

What Languages are Improved More

• Use lang2vec to calculate the distance between languages [Littell+ 2017]

Experimental Results on PAWS-X (Generalized Setting)

- (sentence1, sentence2) \rightarrow are paraphrase or not
- Sentence1 and sentence2 are in different languages

Robust training leads to much more improvement when sentence1 and sentence2 in different languages

Interesting future work: How to handle code-switching input sequences

Performance Gap (Randomized Smoothing (RP) - Baseline) Performance Gap (Randomized Smoothing (DA) - Baseline)

12

Conclusion

- We draw connections between adversarial perturbations and the failure cases of zero-shot cross-lingual transfer
- We propose to use robust training methods to train models that can tolerate some noise in representations
- Experimental results demonstrate that robust training can improve the zero-shot cross-lingual transfer, especially in the generalized setting

Plus lab Code is available at https://github.com/uclanlp/Robust-XLT

Thank You!

13