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Active Learning

Active learning for multiclass classification

I labeled pool Dl = {feature : x(n), label : y(n)}Nl
n=1 .

I unlabeled pool Du = {feature : x(n)}Nu
n=1

I for round t = 1, 2, ..., T
I select instance xs ∈ Du by a querying strategy to get label ys
I move (xs, ys) from unlabeled pool Du to labeled pool Dl

I learn a classifier f (t) from the current labeled pool Dl

I improve the performance of f (t) with respect to #queries

Querying strategies
I uncertainty sampling [Lewis et al., 2010; Tong et al. 2001; Jing et al., 2004]

I representative sampling [Settles et al., 2008; Huang et al., 2014; Dasgupta et al., 2008]

I error reduction [Roy et al., 2001]
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Evaluation Criteria

Regular (Error rate)

healthy cold Zika
healthy 0 1 1

cold 1 0 1
Zika 1 1 0

I same costs of errors
I most common criterion

Cost matrix

healthy cold Zika
healthy 0 10 50

cold 200 0 100
Zika 1000 800 0

I different costs of errors
I cost matrix Ci,j : predict ci as cj

Cost-sensitive active learning algorithms
I cost-sensitive multiclass classifcation takes cost matrix C into account
I our goal: active learning for cost-sensitive multiclass classification

querying strategy classifier f
regular algorithms by f , Dl, and Du learned from Dl

cost-sensitive algorithms by f , Dl, Du, and C learned from Dl and C
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Cost Embedding (Training)
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Training stage
I for classes c1, c2, ..., cK , find K hidden points z1, z2, ..., zK
I higher (lower) cost Ci,j ⇔ larger (smaller) distance d(zi, zj)

I preserve the order of the costs in distance
I by non-metric multidimensional scaling
I learn a regressor g from {x(n), z(n)}Nl

n=1
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Cost Embedding (Predicting)
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z̃ = g(x)

Predicting stage
I for a testing instance x, get the predicted hidden point z̃ = g(x)

I find the nearest hidden point of z̃ from z1, z2, ..., zK
I take the corresponding class as the cost-sensitive prediction

asymmetric cost (Ci,j 6= Cj,i) vs. symmetric distance?
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Mirroring Trick
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Two roles of class

I two roles of class ci: ground truth role z
(t)
i and prediction role z

(p)
i

I Ci,j ⇒ ci is ground truth and cj is prediction ⇒ for z(t)i and z
(p)
j

I Cj,i ⇒ ci is prediction and cj is ground truth ⇒ for z(p)i and z
(t)
j

I learn a regressor g from z
(p)
1 , z

(p)
2 , ..., z

(p)
K

I find the nearest hidden point of z̃ from z
(t)
1 , z

(t)
2 , ..., z

(t)
K
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Active Learning with Cost Embedding
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Cost-sensitive Uncertainty
I nearest hidden point with large distance ⇒ uncertain prediction
I cost-sensitive uncertainty: distance between nearest hidden point and

predicted hidden point z̃

Active learning with cost embedding (ALCE)
I for round t = 1, 2, ..., T

I select xs ∈ Du with highest cost-sensitive uncertainty to query the label ys
I update Dl and Du, and learn a classifier f (t) by cost embedding
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Comparison with Cost-Insensitive Algorithms

I ID, HC, UC-D, UC-E: their querying strategies + RBF kernel SVM
I ALCE-N (blue line): proposed querying strategy + RBF kernel SVM
I ALCE (red line): proposed querying strategy + cost embedding
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I ALCE-N outperforms ID, HC, UC-D, UC-E ⇒ querying strategy is useful
I ALCE outperforms ALCE-N ⇒ cost embedding is useful
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Comparison with Cost-Sensitive Algorithms

I MEC, CWMM, DGS: probabilistic uncertainty + RBF kernel SVM
I ALCE (red line): non-probabilistic uncertainty + cost embedding
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I ALCE outperforms MEC, CWMM, DGS
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Conclusion

I propose active learning with cost embedding (ALCE)
I embedding view for cost-sensitive multiclass classification
I embed cost information in distance by non-metric multidimensional scaling
I mirroring trick for asymmetric cost matrix
I define cost-sensitive uncertainty by distance

I promising performance of ALCE compared with state-of-the-art
cost-sensitive active learning algorithms

Thank you! Any question?
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